When a light of wavelength $$300 \mathrm{~nm}$$ fall on a photoelectric emitter, photo electrons are emitted. For another emitter light of wavelength $$600 \mathrm{~nm}$$ is just sufficient for liberating photoelectrons. The ratio of the work function of the two emitters is
Light of frequency 1.5 times the threshold frequency is incident on photosensitive material. If the frequency is halved and intensity is doubled, the photocurrent becomes
Graph shows the variation of de-Broglie wavelength $$(\lambda)$$ versus $$\frac{1}{\sqrt{V}}$$ where '$$V$$' is the accelerating potential for four particles A, B, C, D carrying same charge but of masses $$\mathrm{m_1, m_2, m_3, m_4}$$. Which on represents a particle of largest mass?
When an electron is accelerated through a potential '$$V$$', the de-Broglie wavelength associated with it is '$$4 \lambda$$'. When the accelerating potential is increased to $$4 \mathrm{~V}$$, its wavelength will be