The graph of stopping potential $V_s$ against frequency $v$ of incident radiation is plotted for two different metals $P$ and $Q$ as shown in the graph. $\phi_p$ and $\phi_Q$ are work-functions of $P$ and $Q$ respectively, then
If the maximum kinetic energy of emitted electrons in photoelectric effect is $3.2 \times 10^{-19} \mathrm{~J}$ and the work-function for metal is $6.63 \times 10^{-19} \mathrm{~J}$, then stopping potential and threshold wavelength respectively are
[Planck's constant, $h=6.63 \times 10^{34} \mathrm{~J}$-s]
[Velocity of light, $c=3 \times 10^8 \frac{\mathrm{~m}}{\mathrm{~s}}$ ]
[Charge on electron $=1.6 \times 10^{-19} \mathrm{C}$ ]
The light of wavelength $$\lambda$$ incident on the surface of metal having work function $$\phi$$ emits the electrons. The maximum velocity of electrons emitted is [ $$c=$$ velocity of light, $$h=$$ Planck's constant, $$m=$$ mass of electron]
The graph of kinetic energy against the frequency $$v$$ of incident light is as shown in the figure. The slope of the graph and intercept on $$X$$-axis respectively are