If two identical spherical bodies of same material and dimensions are kept in contact, the gravitational force between them is proportional to $$\mathrm{R}^{\mathrm{X}}$$, where $$\mathrm{x}$$ is non zero integer [Given : $$\mathrm{R}$$ is radius of each spherical body]
A body is projected vertically upwards from earth's surface of radius '$$R$$' with velocity equal to $$\frac{1^{\text {rd }}}{3}$$ of escape velocity. The maximum height reached by the body is
A simple pendulum is oscillating with frequency '$$F$$' on the surface of the earth. It is taken to a depth $$\frac{\mathrm{R}}{3}$$ below the surface of earth. ( $$\mathrm{R}=$$ radius of earth). The frequency of oscillation at depth $$\mathrm{R} / 3$$ is
The depth at which acceleration due to gravity becomes $$\frac{\mathrm{g}}{2 \mathrm{n}}$$ is $$(\mathrm{R}=$$ radius of earth, $$\mathrm{g}=$$ acceleration due to gravity on earth's surface, $$\mathrm{n}$$ is integer)