The ratio of energy required to raise a satellite to a height '$$h$$' above the earth's surface to that required to put it into the orbit at the same height is ($$\mathrm{R}=$$ radius of earth)
The radius of earth is $$6400 \mathrm{~km}$$ and acceleration due to gravity $$\mathrm{g}=10 \mathrm{~ms}^{-2}$$. For the weight of body of mass $$5 \mathrm{~kg}$$ to be zero on equator, rotational velocity of the earth must be (in $$\mathrm{rad} / \mathrm{s}$$ )
A body of mass '$$\mathrm{m}$$' kg starts falling from a distance 3R above earth's surface. When it reaches a distance '$$R$$' above the surface of the earth of radius '$$R$$' and Mass '$$M$$', then its kinetic energy is
A body is projected vertically from earth's surface with velocity equal to half the escape velocity. The maximum height reached by the satellite is ( $$R$$ = radius of earth)