1
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

Three vectors $\hat{\mathrm{i}}-\hat{\mathrm{k}}, \lambda \hat{\mathrm{i}}+\hat{\mathrm{j}}+(1-\lambda) \hat{\mathrm{k}}$ and $\mu \hat{\mathrm{i}}+\lambda \hat{\mathrm{j}}+(1+\lambda-\mu) \hat{\mathrm{k}}$ represents coterminous edges of a parallelopiped, then the volume of the parallelopiped depends on.

A
only $\lambda$
B
only $\mu$
C
both $\lambda$ and $\mu$
D
neither $\lambda$ nor $\mu$
2
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The line of intersection of the planes $\bar{r} \cdot(3 \hat{i}-\hat{j}+\hat{k})=1 \quad$ and $\quad \bar{r} \cdot(\hat{i}+4 \hat{j}-2 \hat{k})=2 \quad$ is parallel to the vector

A
$\quad 2 \hat{\mathrm{i}}+7 \hat{\mathrm{j}}+13 \hat{\mathrm{k}}$
B
$-2 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}+13 \hat{\mathrm{k}}$
C
$-2 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}-13 \hat{\mathrm{k}}$
D
$\quad-2 \hat{\mathrm{i}}+7 \hat{\mathrm{j}}+13 \hat{\mathrm{k}}$
3
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The lines $\overline{\mathrm{r}}=\overline{\mathrm{a}}+\lambda(\overline{\mathrm{b}} \times \overline{\mathrm{c}})$ and $\overline{\mathrm{r}}=\overline{\mathrm{c}}+\lambda(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$ will intersect if

A

$\overline{\mathrm{a}} \times \overline{\mathrm{b}}=\overline{\mathrm{b}} \times \overline{\mathrm{c}}$

B

$\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=\overline{\mathrm{b}} \cdot \overline{\mathrm{c}}$

C

$\bar{a} \cdot \bar{c}=|\bar{b}|^2$

D

$\bar{a} \times \bar{b}=\bar{c} \times \bar{a}$

4
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{a}=\hat{i}+\hat{j}, \bar{b}=2 \hat{i}-\hat{k}$ then the point of intersection of the lines $\overline{\mathrm{r}} \times \overline{\mathrm{a}}=\overline{\mathrm{b}} \times \overline{\mathrm{a}}$ and $\overline{\mathrm{r}} \times \overline{\mathrm{b}}=\overline{\mathrm{a}} \times \overline{\mathrm{b}}$ is

A
$(3,-1,1)$
B
$\quad(3,1,-1)$
C
$(-3,1,1)$
D
$(1,1,1)$
MHT CET Subjects
EXAM MAP