1
JEE Advanced 2022 Paper 1 Online
Numerical
+3
-0
Change Language

The reduction potential $\left(E^{0}\right.$, in $\left.\mathrm{V}\right)$ of $\mathrm{MnO}_{4}^{-}(\mathrm{aq}) / \mathrm{Mn}(\mathrm{s})$ is __________.

[Given: $E_{\left(\mathrm{MnO}_{4}^{-}(\mathrm{aq}) / \mathrm{MnO}_{2}(\mathrm{~s})\right)}^{0}=1.68 \mathrm{~V} ; E_{\left(\mathrm{MnO}_{2}(\mathrm{~s}) / \mathrm{Mn}^{2+}(\mathrm{aq})\right)}^{0}=1.21 \mathrm{~V} ; E_{\left(\mathrm{Mn}^{2+}(\mathrm{aq}) / \mathrm{Mn}(\mathrm{s})\right)}^{0}=-1.03 \mathrm{~V}$ ]

Your input ____
2
JEE Advanced 2021 Paper 2 Online
Numerical
+2
-0
Change Language
At 298 K, the limiting molar conductivity of a weak monobasic acid is 4 $$\times$$ 102 S cm2 mol$$-$$1. At 298 K, for an aqueous solution of the acid the degree of dissociation is $$\alpha$$ and the molar conductivity is y $$\times$$ 102 S cm2 mol$$-$$1. At 298 K, upon 20 times dilution with water, the molar conductivity of the solution becomes 3y $$\times$$ 102 S cm2 mol$$-$$1.

The value of $$\alpha$$ is __________.
Your input ____
3
JEE Advanced 2021 Paper 2 Online
Numerical
+2
-0
Change Language
At 298 K, the limiting molar conductivity of a weak monobasic acid is 4 $$\times$$ 102 S cm2 mol$$-$$1. At 298 K, for an aqueous solution of the acid the degree of dissociation is $$\alpha$$ and the molar conductivity is y $$\times$$ 102 S cm2 mol$$-$$1. At 298 K, upon 20 times dilution with water, the molar conductivity of the solution becomes 3y $$\times$$ 102 S cm2 mol$$-$$1.

The value of y is __________.
Your input ____
4
JEE Advanced 2020 Paper 1 Offline
Numerical
+4
-0
Change Language
Consider a 70% efficient hydrogen-oxygen fuel cell working under standard conditions at 1 bar and 298 K. Its cell reaction is

$${H_2}(g) + {1 \over 2}{O_2}(g)\buildrel {} \over \longrightarrow {H_2}O(l)$$

The work derived from the cell on the consumption of 1.0 $$ \times $$ 10$$-$$3 mole of H2(g) is used to compress 1.00 mole of a monoatomic ideal gas in a thermally insulated container. What is the change in the temperature (in K) of the ideal gas?

The standard reduction potentials for the two half-cells are given below :

$${O_2}(g) + 4{H^ + }(aq) + 4{e^ - }\buildrel {} \over \longrightarrow 2{H_2}O(l),$$

$${E^o} = 1.23V$$

$$2{H^ + }(aq) + 2{e^ - }\buildrel {} \over \longrightarrow {H_2}(g),$$

$${E^o} = 0.00\,V$$

Use, $$F = 96500\,C\,mo{l^{ - 1}}$$, $$R = 8.314\,J\,mo{l^{ - 1}}\,{K^{ - 1}}$$.
Your input ____
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12