The magnitude of a vector which is orthogonal to the vector $\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$ and is coplanar with the vectors $\hat{i}+\hat{j}+2 \hat{k}$ and $\hat{i}+2 \hat{j}+\hat{k}$ is
Let $\overline{\mathrm{OA}}=\overline{\mathrm{a}}, \overline{\mathrm{OB}}=\overline{\mathrm{b}}$ and if the vector along the angle bisector of $\angle \mathrm{AOB}$ is given by $x \frac{\overline{\mathrm{a}}}{|\overline{\mathrm{a}}|}+y \frac{\overline{\mathrm{~b}}}{|\overline{\mathrm{~b}}|}$ then
In triangle ABC , the point P divides BC internally in the ratio $3: 4$ and Q divides CA internally in the ratio $5: 3$. If AP and BQ intersect in a point $G$, then $G$ divides $A P$ internally in the ratio
Let $\bar{u}, \bar{v}, \bar{w}$ be the vectors such that $|\overline{\mathrm{u}}|=1,|\overline{\mathrm{v}}|=2,|\overline{\mathrm{w}}|=3$. If the projection $\overline{\mathrm{v}}$ along $\overline{\mathrm{u}}$ is equal to that of $\overline{\mathrm{w}}$ along $\overline{\mathrm{u}}$ and the vectors $\overline{\mathrm{v}}, \overline{\mathrm{w}}$ are perpendicular to each other then $|\overline{\mathrm{u}}-\overline{\mathrm{v}}+\overline{\mathrm{w}}|$ equals