1
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The magnitude of a vector which is orthogonal to the vector $\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$ and is coplanar with the vectors $\hat{i}+\hat{j}+2 \hat{k}$ and $\hat{i}+2 \hat{j}+\hat{k}$ is

A
$\sqrt{2}$
B
$4 \sqrt{2}$
C
4
D
$2 \sqrt{3}$
2
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\overline{\mathrm{OA}}=\overline{\mathrm{a}}, \overline{\mathrm{OB}}=\overline{\mathrm{b}}$ and if the vector along the angle bisector of $\angle \mathrm{AOB}$ is given by $x \frac{\overline{\mathrm{a}}}{|\overline{\mathrm{a}}|}+y \frac{\overline{\mathrm{~b}}}{|\overline{\mathrm{~b}}|}$ then

A
$x-y=0$
B
$x+y=0$
C
$x=2 y$
D
$y=2 x$
3
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

In triangle ABC , the point P divides BC internally in the ratio $3: 4$ and Q divides CA internally in the ratio $5: 3$. If AP and BQ intersect in a point $G$, then $G$ divides $A P$ internally in the ratio

A
$2: 1$
B
$5: 7$
C
$7: 5$
D
$1: 2$
4
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{u}, \bar{v}, \bar{w}$ be the vectors such that $|\overline{\mathrm{u}}|=1,|\overline{\mathrm{v}}|=2,|\overline{\mathrm{w}}|=3$. If the projection $\overline{\mathrm{v}}$ along $\overline{\mathrm{u}}$ is equal to that of $\overline{\mathrm{w}}$ along $\overline{\mathrm{u}}$ and the vectors $\overline{\mathrm{v}}, \overline{\mathrm{w}}$ are perpendicular to each other then $|\overline{\mathrm{u}}-\overline{\mathrm{v}}+\overline{\mathrm{w}}|$ equals

A
$\sqrt{14}$
B
14
C
$\sqrt{7}$
D
2
MHT CET Subjects
EXAM MAP