1
MHT CET 2025 21st April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The lines $\overline{\mathrm{r}}=\overline{\mathrm{a}}+\lambda(\overline{\mathrm{b}} \times \overline{\mathrm{c}})$ and $\overline{\mathrm{r}}=\overline{\mathrm{c}}+\lambda(\overline{\mathrm{a}} \times \overline{\mathrm{b}})$ will intersect if

A

$\overline{\mathrm{a}} \times \overline{\mathrm{b}}=\overline{\mathrm{b}} \times \overline{\mathrm{c}}$

B

$\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}=\overline{\mathrm{b}} \cdot \overline{\mathrm{c}}$

C

$\bar{a} \cdot \bar{c}=|\bar{b}|^2$

D

$\bar{a} \times \bar{b}=\bar{c} \times \bar{a}$

2
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{a}=\hat{i}+\hat{j}, \bar{b}=2 \hat{i}-\hat{k}$ then the point of intersection of the lines $\overline{\mathrm{r}} \times \overline{\mathrm{a}}=\overline{\mathrm{b}} \times \overline{\mathrm{a}}$ and $\overline{\mathrm{r}} \times \overline{\mathrm{b}}=\overline{\mathrm{a}} \times \overline{\mathrm{b}}$ is

A
$(3,-1,1)$
B
$\quad(3,1,-1)$
C
$(-3,1,1)$
D
$(1,1,1)$
3
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the projection of $\bar{a}$ on $\bar{b}+\bar{c}$ is twice the projection of $\bar{b}+\bar{c}$ on $\bar{a}$ also if $|\bar{b}|=2 \sqrt{2},|\bar{c}|=4$ and the angle between $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ is $\frac{\pi}{4}$ then $|\overline{\mathrm{a}}|=$

A
$2 \sqrt{10}$
B
$3 \sqrt{10}$
C
$4 \sqrt{10}$
D
$5 \sqrt{10}$
4
MHT CET 2025 20th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the points $\mathrm{A}(1,1,2), \mathrm{B}(2,1, \mathrm{p}), \mathrm{C}(1,0,3)$ and $D(2,2,0)$ are coplanar then the value of $p$ is

A
0
B
-1
C
1
D
2
MHT CET Subjects
EXAM MAP