STATEMENT - 1 :
The stream of water flowing at high speed from a garden hose pipe tends to spread line a fountain when held vertically up, but tends to narrow down when held vertically down.
and
STATEMENT - 2 :
In any steady flow of an incompressible fluid, the volume flow rate of the fluid remains constant.
A small spherical monoatomic ideal gas bubble $$\left( {\gamma = {5 \over 3}} \right)$$ is trapped inside a liquid of density $$\rho_1$$ (see figure). Assume that the bubble does not exchange any heat with the liquid. The bubble contains n moles of gas. The temperature of the gas when the bubble is at the bottom is T$$_0$$, the height of the liquid is H and the atmospheric pressure is P$$_0$$ (Neglect surface tension)
As the bubble moves upwards, besides the buoyancy force the following forces are acting on it
A small spherical monoatomic ideal gas bubble $$\left( {\gamma = {5 \over 3}} \right)$$ is trapped inside a liquid of density $$\rho_1$$ (see figure). Assume that the bubble does not exchange any heat with the liquid. The bubble contains n moles of gas. The temperature of the gas when the bubble is at the bottom is T$$_0$$, the height of the liquid is H and the atmospheric pressure is P$$_0$$ (Neglect surface tension)
When the gas bubble is at a height y from the bottom, its temperature is :
A small spherical monoatomic ideal gas bubble $$\left( {\gamma = {5 \over 3}} \right)$$ is trapped inside a liquid of density $$\rho_1$$ (see figure). Assume that the bubble does not exchange any heat with the liquid. The bubble contains n moles of gas. The temperature of the gas when the bubble is at the bottom is T$$_0$$, the height of the liquid is H and the atmospheric pressure is P$$_0$$ (Neglect surface tension)
The buoyancy force acting on the gas bubble is (Assume R is the universal gas constant)