A person in a lift is holding a water jar, which has a small hole at the lower end of its side. When the lift is at rest, the water jet coming out of the hole hits the floor of the lift at a distance d of 1.2 m from the person. In the following, state of the lift’s motion is given in List I and the distance where the water jet hits the floor of the lift is given in List II. Match the statements from List I with those in List II and select the correct answer using the options given below the lists.
List - I | List - II |
---|---|
P. Lift is accelerating vertically up. | 1. d=1.2 m |
Q. Lift is accelerating vertically down with an acceleration less than the gravitational acceleration. |
2. d > 1.02 m |
R. Lift is moving vertically up with constant speed. |
3. d < 1.2 m |
S. Lift is falling freely. | 4. No water leaks out of the jar |
A glass capillary tube is of the shape of truncated cone with an apex angle $$\alpha$$ so that its two ends have cross sections of different radii. When dipped in water vertically, water rises in it to a height h, where the radius of its cross section is b. If the surface tension of water is S, its density is $$\rho$$, and its contact angle with glass is $$\theta$$, the value of h will be (g is the acceleration due to gravity)