1
JEE Advanced 2015 Paper 1 Offline
+8
-4

Match the nuclear processes given in Column I with the appropriate option(s) in Column II: A
(A)→(R) or (RT), (T); (B)→(P), (S); (C)→(Q), (T); (D)→(R)
B
(A)→(R), (T); (B)→(Q), (S); (C)→(Q), (T); (D)→(R)
C
(A)→(R) or (RT), (T); (B)→(P), (S); (C)→(S), (T); (D)→(R)
D
(A)→(P), (T); (B)→(P), (S); (C)→(Q), (T); (D)→(R)
2
JEE Advanced 2014 Paper 2 Offline
+3
-1

If $$\lambda$$Cu is the wavelength of K$$\alpha$$ X-ray line of copper (atomic number 29) and $$\lambda$$Mo is the wavelength of the K$$\alpha$$ X-ray line of molybdenum (atomic number 42), then the ratio $$\lambda$$Cu/$$\lambda$$Mo is close to

A
1.99
B
2.14
C
0.50
D
0.48
3
JEE Advanced 2013 Paper 2 Offline
+3
-1

The mass of a nucleus $$_Z^AX$$ is less than the sum of the masses of (A-Z) number of neutrons and Z number of protons in the nucleus. The energy equivalent to the corresponding mass difference is known as the binding energy of the nucleus. A heavy nucleus of mass M can break into two light nuclei of masses m1 and m2 only if (m1 + m2) < M. Also two light nuclei of masses m3 and m4 can undergo complete fusion and form a heavy nucleus of mass M' only if (m3 + m4) > M'. The masses of some neutral atoms are given in the table below :

$$_1^1H$$ 1.007825 u $$_1^2H$$ 2.014102 u
$$_3^6Li$$ 6.015123 u $$_3^7Li$$ 7.016004 u
$$_{64}^{152}Gd$$ 151.919803 u $$_{82}^{206}Pb$$ 205.974455 u
$$_1^3H$$ 3.016050 u $$_2^4He$$ 4.002603 u
$$_{30}^{70}Zn$$ 69.925325 u $$_{34}^{82}Se$$ 81.916709 u
$$_{83}^{209}Bi$$ 208.980388 u $$_{84}^{210}Po$$ 209.982876 u

(1 u = 932 MeV/c2)

The correct statement is

A
the nucleus $$_3^6Li$$ can emit an alpha particle.
B
the nucleus $$_{84}^{210}Po$$ can emit a proton.
C
deuteron and alpha particle can undergo complete fusion.
D
the nuclei $$_{30}^{70}Zn$$ and $$_{34}^{82}Se$$ can undergo complete fusion.
4
JEE Advanced 2013 Paper 2 Offline
+3
-1

The mass of a nucleus $$_Z^AX$$ is less than the sum of the masses of (A-Z) number of neutrons and Z number of protons in the nucleus. The energy equivalent to the corresponding mass difference is known as the binding energy of the nucleus. A heavy nucleus of mass M can break into two light nuclei of masses m1 and m2 only if (m1 + m2) < M. Also two light nuclei of masses m3 and m4 can undergo complete fusion and form a heavy nucleus of mass M' only if (m3 + m4) > M'. The masses of some neutral atoms are given in the table below :

$$_1^1H$$ 1.007825 u $$_1^2H$$ 2.014102 u
$$_3^6Li$$ 6.015123 u $$_3^7Li$$ 7.016004 u
$$_{64}^{152}Gd$$ 151.919803 u $$_{82}^{206}Pb$$ 205.974455 u
$$_1^3H$$ 3.016050 u $$_2^4He$$ 4.002603 u
$$_{30}^{70}Zn$$ 69.925325 u $$_{34}^{82}Se$$ 81.916709 u
$$_{83}^{209}Bi$$ 208.980388 u $$_{84}^{210}Po$$ 209.982876 u

(1 u = 932 MeV/c2)

The kinetic energy (in keV) of the alpha particle, when the nucleus $$_{84}^{210}Po$$ at rest undergoes alpha decay, is

A
5319
B
5422
C
5707
D
5818
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination