1
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$ are unit vectors and $\theta$ is the angle between them, then $\overline{\mathrm{a}}+\overline{\mathrm{b}}$ is a unit vector when $\theta$ is

A
$\frac{\pi}{3}$
B
$\frac{2 \pi}{3}$
C
$\frac{\pi}{2}$
D
$\frac{\pi}{4}$
2
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

The magnitude of a vector which is orthogonal to the vector $\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}$ and is coplanar with the vectors $\hat{i}+\hat{j}+2 \hat{k}$ and $\hat{i}+2 \hat{j}+\hat{k}$ is

A
$\sqrt{2}$
B
$4 \sqrt{2}$
C
4
D
$2 \sqrt{3}$
3
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\overline{\mathrm{OA}}=\overline{\mathrm{a}}, \overline{\mathrm{OB}}=\overline{\mathrm{b}}$ and if the vector along the angle bisector of $\angle \mathrm{AOB}$ is given by $x \frac{\overline{\mathrm{a}}}{|\overline{\mathrm{a}}|}+y \frac{\overline{\mathrm{~b}}}{|\overline{\mathrm{~b}}|}$ then

A
$x-y=0$
B
$x+y=0$
C
$x=2 y$
D
$y=2 x$
4
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

In triangle ABC , the point P divides BC internally in the ratio $3: 4$ and Q divides CA internally in the ratio $5: 3$. If AP and BQ intersect in a point $G$, then $G$ divides $A P$ internally in the ratio

A
$2: 1$
B
$5: 7$
C
$7: 5$
D
$1: 2$
MHT CET Subjects
EXAM MAP