1
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $(a+\sqrt{2} b \cos x)(a-\sqrt{2} b \cos y)=a^2-b^2$, where $\mathrm{a}>\mathrm{b}>0$, then $\frac{\mathrm{d} x}{\mathrm{~d} y}$ at $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$ is

A
$\frac{a-b}{a+b}$
B
$\frac{a+b}{a-b}$
C
$\frac{2 a+b}{2 a-b}$
D
$\frac{a-2 b}{a+2 b}$
2
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $x=2 \cos \theta-\cos 2 \theta$ and $y=2 \sin \theta-\sin 2 \theta$, then $\frac{\mathrm{d}^2 y}{d x^2}$ is equal to

A
$\frac{3}{2} \tan \frac{3 \theta}{2}$
B
$\frac{3}{2} \sec \frac{3 \theta}{2} \tan \frac{3 \theta}{2}$
C
$\frac{3}{2} \sec ^2 \frac{3 \theta}{2}$
D
$\sec ^2 \frac{3 \theta}{2}$
3
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\log _{x^2}(\log x)$, then at $x=\mathrm{e}, \mathrm{f}^{\prime}(x)$ has the value

A
$\frac{1}{\mathrm{e}^2}$
B
$\frac{1}{\mathrm{e}}$
C
$\mathrm{e}^2$
D
$\frac{1}{2 \mathrm{e}}$
4
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{f}(x)=\frac{x}{\sqrt{\mathrm{a}^2+x^2}}-\frac{\mathrm{d}-x}{\sqrt{\mathrm{~b}^2+(\mathrm{d}-x)^2}}, x \in \mathbb{R}$ where $\mathrm{a}, \mathrm{b}, \mathrm{d}$ are non-zero real constants. Then

A
$\mathrm{f}^{\prime}$ is not a continuous function of $x$.
B
f is neither increasing nor decreasing function of $x$.
C
f is an increasing function of $x$.
D
f is a decreasing function of $x$.
MHT CET Subjects
EXAM MAP