1
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\log \left[\mathrm{e}^{5 x}\left(\frac{3 x-4}{x+5}\right)^{\frac{4}{3}}\right]$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is equal to

A
$5+\frac{4}{3 x-4}-\frac{4}{3(x+5)}$
B
$5+\frac{4}{3(3 x-4)}-\frac{4}{3(x+5)}$
C
$5 x+\frac{4}{3 x-4}-\frac{4}{3(x+5)}$
D
$5+\frac{12}{3 x-4}-\frac{4}{(x+5)}$
2
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0
 

Let $f$ be a twice differentiable function such that $\mathrm{f}^{\prime \prime}(x)=-\mathrm{f}(x), \mathrm{f}^{\prime}(x)=\mathrm{g}(x)$ and $\mathrm{h}(x)=[\mathrm{f}(x)]^2+[\mathrm{g}(x)]^2$. If $\mathrm{h}(5)=1$, then $\mathrm{h}(10)$ is __________.

A
2
B
4
C
$-$1
D
1
3
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\sec \left(\tan ^{-1} x\right)$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=1$ is equal to

A
$\frac{-1}{\sqrt{2}}$
B
$\frac{1}{2}$
C
$\frac{1}{\sqrt{2}}$
D
$\sqrt{2}$
4
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\log _{x^2}\left(\log _{\mathrm{e}} x\right)$, then $\mathrm{f}^{\prime}(x)$ at $x=\mathrm{e}$ is

A
1
B
$\frac{1}{\mathrm{e}}$
C
$\frac{1}{2 \mathrm{e}}$
D
$\frac{1}{4 \mathrm{e}}$
MHT CET Subjects
EXAM MAP