1
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(1)=3, \mathrm{f}^{\prime}(1)=2$, then $\frac{\mathrm{d}}{\mathrm{dx}}\left\{\log \left[\mathrm{f}\left(\mathrm{e}^x+2 x\right)\right]\right\}$ at $x=0$ is

A
$\frac{2}{3}$
B
$\frac{3}{2}$
C
2
D
0
2
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Derivative of $x^{\left(x^x\right)}$ is

A
$\quad x^{\left(x^x\right)}\left(x^x+1+\log x\right)$
B
$x^{\left(x^x\right)}\left(x^x+\log x\right)$
C
$x^{\left(x^x\right)}\left(x^x+x^{x-1} \log x(1+\log x)\right)$
D
$\quad x^{\left(x^x\right)}\left(x^{x-1}+x^x \log x(1+\log x)\right)$
3
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

For $N \in \mathbb{N}, \frac{\mathrm{~d}^{\mathrm{n}}}{\mathrm{d} x^{\mathrm{n}}}(\log x)=$

A
$\frac{(n-1)!}{x^n}$
B
$\frac{n!}{x^n}$
C
$\frac{(\mathrm{n}-2)!}{x^{\mathrm{n}}}$
D
$\quad(-1)^{n-1} \frac{(n-1)!}{x^n}$
4
MHT CET 2025 22nd April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $x=\operatorname{acos}^3 \theta y=\operatorname{asin}^3 \theta$

Then $\sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^2}=$

A
$\tan ^2 \theta$
B
$\sec ^2 \theta$
C
$\sec \theta$
D
$\tan \theta$
MHT CET Subjects
EXAM MAP