1
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\log _{x^2}\left(\log _{\mathrm{e}} x\right)$, then $\mathrm{f}^{\prime}(x)$ at $x=\mathrm{e}$ is

A
1
B
$\frac{1}{\mathrm{e}}$
C
$\frac{1}{2 \mathrm{e}}$
D
$\frac{1}{4 \mathrm{e}}$
2
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $x=\sec \theta-\cos \theta, y=\sec ^{10} \theta-\cos ^{10} \theta$ and $\left(x^2+4\right)\left(\frac{d y}{d x}\right)^2=k\left(y^2+4\right)$, then the value of $k$ is

A
$\frac{1}{100}$
B
1
C
10
D
100
3
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\sin ^{-1}\left(\frac{2 \cdot 3^x}{1+9^x}\right)$, then $\mathrm{f}^{\prime}\left(\frac{1}{2}\right)$ equals

A
$\sqrt{3} \log (\sqrt{3})$
B
$-\sqrt{3} \log 3$
C
$-\sqrt{3} \log (\sqrt{3})$
D
$\sqrt{3} \log 3$
4
MHT CET 2024 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{F}(x)=\left(\mathrm{f}\left(\frac{x}{2}\right)\right)^2+\left(\mathrm{g}\left(\frac{x}{2}\right)\right)^2$, where $\mathrm{f}^{\prime \prime}(x)=-\mathrm{f}(x)$ and $\mathrm{g}(x)=\mathrm{f}^{\prime}(x)$ and given by $\mathrm{F}(5)=5$, then $F(10)$ is equal to

A
5
B
10
C
15
D
0
MHT CET Subjects
EXAM MAP