1
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y=[(x+1)(2 x+1)(3 x+1) \ldots \ldots \ldots(n x+1)]^4$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=0$ is

A
$\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
B
$4 \mathrm{n}(\mathrm{n}+1)$
C
$\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^2$
D
$2 \mathrm{n}(\mathrm{n}+1)$
2
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Derivative of $\sin ^2 x$ with respect to $e^{\cos x}$

A
$2 \sin x \cos ^2 x e^{\cos x}$
B
$\frac{2 \cos x}{\mathrm{e}^{\cos x}}$
C
$\frac{2 \sin x}{\mathrm{e}^{\cos x}}$
D
$\frac{-2 \cos x}{e^{\cos x}}$
3
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\log \left[\mathrm{e}^{5 x}\left(\frac{3 x-4}{x+5}\right)^{\frac{4}{3}}\right]$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is equal to

A
$5+\frac{4}{3 x-4}-\frac{4}{3(x+5)}$
B
$5+\frac{4}{3(3 x-4)}-\frac{4}{3(x+5)}$
C
$5 x+\frac{4}{3 x-4}-\frac{4}{3(x+5)}$
D
$5+\frac{12}{3 x-4}-\frac{4}{(x+5)}$
4
MHT CET 2024 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0
 

Let $f$ be a twice differentiable function such that $\mathrm{f}^{\prime \prime}(x)=-\mathrm{f}(x), \mathrm{f}^{\prime}(x)=\mathrm{g}(x)$ and $\mathrm{h}(x)=[\mathrm{f}(x)]^2+[\mathrm{g}(x)]^2$. If $\mathrm{h}(5)=1$, then $\mathrm{h}(10)$ is __________.

A
2
B
4
C
$-$1
D
1
MHT CET Subjects
EXAM MAP