1
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\log _{x^2}(\log x)$, then at $x=\mathrm{e}, \mathrm{f}^{\prime}(x)$ has the value

A
$\frac{1}{\mathrm{e}^2}$
B
$\frac{1}{\mathrm{e}}$
C
$\mathrm{e}^2$
D
$\frac{1}{2 \mathrm{e}}$
2
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{f}(x)=\frac{x}{\sqrt{\mathrm{a}^2+x^2}}-\frac{\mathrm{d}-x}{\sqrt{\mathrm{~b}^2+(\mathrm{d}-x)^2}}, x \in \mathbb{R}$ where $\mathrm{a}, \mathrm{b}, \mathrm{d}$ are non-zero real constants. Then

A
$\mathrm{f}^{\prime}$ is not a continuous function of $x$.
B
f is neither increasing nor decreasing function of $x$.
C
f is an increasing function of $x$.
D
f is a decreasing function of $x$.
3
MHT CET 2024 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y=(\sin x)^{\tan x}$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is equal to

A
$(\sin x)^{\tan x}\left(1+\sec ^2 x \log (\sin x)\right)$
B
$\tan x(\sin x)^{\tan x-1} \cos x$
C
$(\sin x)^{\tan x} \sec ^2 x \log \sin x$
D
$\tan x(\sin x)^{\tan x-1}$
4
MHT CET 2024 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=(1+x)\left(1+x^2\right)\left(1+x^4\right)\left(1+x^8\right)$, then $f^{\prime}(1)=$

A
60
B
240
C
80
D
120
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12