1
MHT CET 2023 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $$f$$ be a differentiable function such that $$\mathrm{f}(1)=2$$ and $$\mathrm{f}^{\prime}(x)=\mathrm{f}(x)$$, for all $$x \in \mathrm{R}$$. If $$\mathrm{h}(x)=\mathrm{f}(\mathrm{f}(x))$$, then $$\mathrm{h}^{\prime}(1)$$ is equal to

A
$$4 \mathrm{e}^2$$
B
$$4 \mathrm{e}$$
C
$$2 \mathrm{e}$$
D
$$2 \mathrm{e}^2$$
2
MHT CET 2023 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$y$$ is a function of $$x$$ and $$\log (x+y)=2 x y$$, then $$\frac{d y}{d x}$$ at $$x=0$$ is

A
0
B
$$-$$1
C
1
D
2
3
MHT CET 2023 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$x=3 \tan \mathrm{t}$$ and $$y=3 \sec \mathrm{t}$$, then the value of $$\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}$$ at $$\mathrm{t}=\frac{\pi}{4}$$ is

A
$$\frac{-1}{6 \sqrt{2}}$$
B
$$\frac{1}{6 \sqrt{2}}$$
C
$$\frac{1}{3 \sqrt{2}}$$
D
$$\frac{3}{2 \sqrt{2}}$$
4
MHT CET 2023 10th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$y=\tan ^{-1}\left(\frac{\log \left(\frac{\mathrm{e}}{x^2}\right)}{\log \left(e x^2\right)}\right)+\tan ^{-1}\left(\frac{4+2 \log x}{1-8 \log x}\right)$$, then $$\frac{\mathrm{d} y}{\mathrm{~d} x}$$ is

A
0
B
$$\frac{1}{2}$$
C
$$\frac{1}{4}$$
D
1
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12