1
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{y}=x^x+x^{\frac{1}{x}}$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is equal to

A
$x^x(1+\log x)+x^{\frac{1}{x}} \frac{1}{x^2}(1-\log x)$
B
$\left(x^x+x^{\frac{1}{x}}\right)\left[1+\log x+\frac{1}{x^2}(1-\log x)\right]$
C
$\left(x^x+x^{\frac{1}{x}}\right)\left[(1+\log x)-\frac{1}{x^2}(1-\log x)\right]$
D
$x^x(1+\log x)-x^{\frac{1}{x}} \frac{1}{x^2}(1-\log x)$
2
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $f(1)=1, f^{\prime}(1)=3$, then the derivative of $\mathrm{f}(\mathrm{f}(\mathrm{f}(x)))+(\mathrm{f}(x))^2$ at $x=1$ is

A
9
B
12
C
15
D
33
3
MHT CET 2025 20th April Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\log _{\mathrm{e}} x^3+3 \sin ^{-1} x+\mathrm{kx}^2$ and $y^{\prime}\left(\frac{1}{2}\right)=2 \sqrt{3}$, then $k=$

A
6
B
-6
C
$2 \sqrt{3}$
D
1
4
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The derivative of

$$ y=(1-x)(2-x) \ldots \ldots \ldots \ldots \ldots \ldots(\mathrm{n}-x) $$

at $x=1$ is

A
$(\mathrm{n}-1)$ !
B
$n!$
C
$(-1)(n-1)$ !
D
$(-n)(n-1)$ !
MHT CET Subjects
EXAM MAP