1
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The derivative of

$$ y=(1-x)(2-x) \ldots \ldots \ldots \ldots \ldots \ldots(\mathrm{n}-x) $$

at $x=1$ is

A
$(\mathrm{n}-1)$ !
B
$n!$
C
$(-1)(n-1)$ !
D
$(-n)(n-1)$ !
2
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The first derivative of the function $\left(\cos ^{-1}\left(\sin \sqrt{\frac{1+x}{2}}\right)+x^x\right)$ with respect to $x$ at $x=1$ is

A
$\frac{1}{4}$
B
$\frac{5}{4}$
C
$\frac{-1}{2}$
D
$\frac{3}{4}$
3
MHT CET 2025 19th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $x^{\frac{2}{5}}+y^{\frac{2}{5}}=\mathrm{a}^{\frac{2}{5}}$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}=$

A
$\sqrt[5]{\left(\frac{y}{x}\right)^3}$
B
$\quad-\sqrt[5]{\left(\frac{x}{y}\right)^3}$
C
$\sqrt[5]{\left(\frac{x}{y}\right)^3}$
D
$\quad-\sqrt[5]{\left(\frac{y}{x}\right)^3}$
4
MHT CET 2025 19th April Morning Shift
MCQ (Single Correct Answer)
+2
-0
For $\mathrm{n} \in \mathbb{N}$ if $y=\mathrm{a} x^{\mathrm{n}+1}+\mathrm{b} x^{-\mathrm{n}}$, then $x^2 \frac{\mathrm{~d}^2 y}{\mathrm{~d} x^2}=$
A
$\mathrm{n}(\mathrm{n}-1) y$
B
$(\mathrm{n}-1) y$
C
$\mathrm{n}(\mathrm{n}+1) y$
D
$(\mathrm{n}+1) y$
MHT CET Subjects
EXAM MAP