1
MHT CET 2024 4th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y=A \cos \mathrm{n} x+\mathrm{B} \sin \mathrm{nx}$, then $\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}=$

A
$-\mathrm{n}^2 y$
B
$\mathrm{n}^2 y$
C
$\mathrm{n}^2 x$
D
$ \mathrm{n}^2 x^2$
2
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the function $\mathrm{f}(x)=x^3+\mathrm{e}^{\frac{x}{2}}$ and $\mathrm{g}(x)=\mathrm{f}^{-1}(x)$ then the value of $g^{\prime}(1)$ is

A
1
B
0
C
2
D
$\frac{1}{2}$
3
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\left((x+1)(4 x+1)(9 x+1) \ldots\left(\mathrm{n}^2 x+1\right)\right)^2$, then $\frac{\mathrm{dy}}{\mathrm{d} x}$ at $x=0$ is

A
$\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{4}$
B
$\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}$
C
$\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{2}$
D
$\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{3}$
4
MHT CET 2024 3rd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y=[(x+1)(2 x+1)(3 x+1) \ldots \ldots \ldots(n x+1)]^4$ then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=0$ is

A
$\frac{\mathrm{n}(\mathrm{n}+1)}{2}$
B
$4 \mathrm{n}(\mathrm{n}+1)$
C
$\left(\frac{\mathrm{n}(\mathrm{n}+1)}{2}\right)^2$
D
$2 \mathrm{n}(\mathrm{n}+1)$
MHT CET Subjects
EXAM MAP