1
MHT CET 2025 5th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Derivative of

$y=\sqrt{\sin x+\sqrt{\sin x+\sqrt{\sin x+\ldots \ldots \ldots \ldots \ldots \ldots \infty}}}$ is

A

$\frac{\sin x}{1-2 y}$

B

$\frac{\cos x}{1-2 y}$

C

$\frac{\sin x}{1+2 y}$

D

$\frac{\cos x}{2 y-1}$

2
MHT CET 2025 5th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The approximate value of $\frac{1}{(2.002)^2}$ is

A

0.2495

B

0.2595

C

0.2095

D

0.2392

3
MHT CET 2025 5th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $x \cdot \log _e\left(\log _e x\right)-x^2+y^2=4(y>0)$, then $\frac{d y}{d x}$ at $x=\mathrm{e}$ is

A
$\frac{\mathrm{e}}{\sqrt{4+\mathrm{e}^2}}$
B
$\quad \frac{2 \mathrm{e}-1}{2 \sqrt{4+\mathrm{e}^2}}$
C
$\frac{1+2 e}{\sqrt{4+e^2}}$
D
$\quad \frac{1+2 \mathrm{e}}{2 \sqrt{4+\mathrm{e}^2}}$
4
MHT CET 2025 26th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $u=\log (\sqrt{x-1}-\sqrt{x+1})$ and $v=\sqrt{x+1}+\sqrt{x-1}$ then $\frac{d u}{d v}=\ldots$.

A

u

B

v

C

$\frac{-1}{\mathrm{u}}$

D

$\frac{-1}{\mathrm{v}}$

MHT CET Subjects
EXAM MAP