1
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation $\frac{d y}{d x}=\frac{3 e^{2 x}+3 e^{4 x}}{e^x+e^{-x}}$ is

A
$y=\mathrm{e}^{-3 x}+\mathrm{c}$, where c is a constant of integration.
B
$y=\mathrm{e}^x+\mathrm{c}$, where c is a constant of integration.
C
$y=\mathrm{e}^{3 x}+\mathrm{c}$, where c is a constant of integration.
D
$y=\mathrm{e}^{-x}+\mathrm{c}$, where c is a constant of integration.
2
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation, having general solution as $A x^2+B y^2=1$, where $A$ and $B$ are arbitrary constants, is

A
$x y \frac{\mathrm{~d}^2 y}{\mathrm{~d} x^2}-x\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2-y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
B
$x y \frac{\mathrm{~d}^2 y}{\mathrm{~d} x^2}-x\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2+y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
C
$x y \frac{\mathrm{~d}^2 y}{\mathrm{~d} x^2}+x\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2+y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
D
$x y \frac{\mathrm{~d}^2 y}{\mathrm{~d} x^2}+x\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^2-y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0$
3
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A radio active substance has half-life of $h$ days, then its initial decay rate is given by Note that at $\mathrm{t}=0, \mathrm{M}=\mathrm{m}_{\mathrm{o}}$

A
$\frac{\mathrm{m}_{\mathrm{o}}}{\mathrm{h}}(\log 2)$
B
$\left(\mathrm{m}_{\mathrm{o}} \mathrm{h}\right)(\log 2)$
C
$-\frac{\mathrm{m}_{\mathrm{o}}}{\mathrm{h}}(\log 2)$
D
$\left(-\mathrm{m}_{\mathrm{o}} \mathrm{h}\right)(\log 2)$
4
MHT CET 2024 15th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The differential equation of $y=\mathrm{e}^x\left(\mathrm{a}+\mathrm{bx}+x^2\right)$ is

A
$\frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y=0$
B
$\frac{\mathrm{d}^2 y}{\mathrm{dx}^2}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}+y=0$
C
$\frac{\mathrm{d}^2 y}{\mathrm{dx}^2}-2 \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 \mathrm{e}^x+y=0$
D
$\frac{\mathrm{d}^2 y}{\mathrm{dx}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}-\mathrm{e}^x+2 y=0$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12