A proton is fired from very far away towards a nucleus with charge Q = 120e, where e is the electronic charge. It makes a closest approach of 10 fm to the nucleus. The de Broglie wavelength (in units of fm) of the proton at its start is ____________. (Take the proton mass, $${m_p} = (5 \times 3) \times {10^{ - 27}}$$ kg; $$h/e = 4.2 \times {10^{ - 15}}$$ J.s/C; $${1 \over {4\pi {\varepsilon _0}}} = 9 \times {10^9}$$ m/F; 1 fm = 1015 m.)
The activity of a freshly prepared radioactive sample is 1010 disintegrations per second, whose mean life is 109 s. The mass of an atom of this radioisotope is 10$$-$$25 kg. The mass (in mg) of the radioactive sample is _________.
A silver sphere of radius 1 cm and work function 4.7 eV is suspended from an insulating thread in free-space. It is under continuous illumination of 200 nm wavelength light. As photoelectrons are emitted, the sphere gets charged and acquires a potential. The maximum number of photoelectrons emitted from the spheres is A $$\times$$ 10Z (where 1 < A < 10). The value of Z is _____________.
An $$\alpha$$-particle and a proton are accelerated from the rest by a potential difference of 100 V. After this, their de Broglie wavelengths are $$\lambda$$$$\alpha$$ and $$\lambda$$p, respectively. The ratio $${{{\lambda _p}} \over {{\lambda _\alpha }}}$$, to the nearest integer, is _____________.