A light of wavelength $\lambda$ is incident on a photosensitive surface of negligible work function. The photoelectrons emitted from the surface have de-Broglie wavelength $\lambda_1$. Then ratio $\lambda: \lambda_1{ }^2$ is
( $\mathrm{h}=$ Planck's constant, $\mathrm{c}=$ velocity of light, $\mathrm{m}=$ mass of electron)
Light of wavelength ' $\lambda$ ' falls on a metal having work function $\frac{\mathrm{hc}}{\lambda_0}$. Photoelectric effect will take place only if ( $\lambda_0$ is the threshold wavelength)
A parallel beam of light is incident normally on a plane surface absorbing $50 \%$ of the light and reflecting the rest. If the incident beam carries 90 W of power, the force exerted by it on the surface is ( $\mathrm{C}=$ velocity of light in air $=3 \times 10^8 \mathrm{~m} / \mathrm{s}$ )
An electron accelerated by a potential difference ' $V$ ' has de-Broglie wavelength ' $\lambda$ '. If the electron is accelerated by a potential difference ' 9 V ', its de-Broglie wavelength will be