1
JEE Advanced 2022 Paper 2 Online
Numerical
+3
-1
A charge $q$ is surrounded by a closed surface consisting of an inverted cone of height $h$ and base radius $R$, and a hemisphere of radius $R$ as shown in the figure. The electric flux through the conical surface is $\frac{n q}{6 \epsilon_{0}}$ (in SI units). The value of $n$ is _______.
Your input ____
2
JEE Advanced 2021 Paper 1 Online
Numerical
+2
-0
Two point charges $$-$$Q and +Q/$$\sqrt 3 $$ are placed in the xy-plane at the origin (0, 0) and a point (2, 0), respectively, as shown in the figure. This results in an equipotential circle of radius R and potential V = 0 in the xy-plane with its center at (b, 0). All lengths are measured in meters.
The value of R is __________ meter.
The value of R is __________ meter.
Your input ____
3
JEE Advanced 2021 Paper 1 Online
Numerical
+2
-0
Two point charges $$-$$Q and +Q/$$\sqrt 3 $$ are placed in the xy-plane at the origin (0, 0) and a point (2, 0), respectively, as shown in the figure. This results in an equipotential circle of radius R and potential V = 0 in the xy-plane with its center at (b, 0). All lengths are measured in meters.
The value of b is __________ meter.
The value of b is __________ meter.
Your input ____
4
JEE Advanced 2020 Paper 2 Offline
Numerical
+3
-1
A point charge q of mass m is suspended vertically by a string of length l. A point dipole of dipole
moment $$\overrightarrow p $$ is now brought towards q from infinity so that the charge moves away. The final
equilibrium position of the system including the direction of the dipole, the angles and distances is
shown in the figure below. If the work done in bringing the dipole to this position is N $$ \times $$ (mgh),
where g is the acceleration due to gravity, then the value of N is _________ .
(Note that for three coplanar forces keeping a point mass in equilibrium, $${F \over {\sin \theta }}$$ is the same for all forces, where F is any one of the forces and $$\theta $$ is the angle between the other two forces)
(Note that for three coplanar forces keeping a point mass in equilibrium, $${F \over {\sin \theta }}$$ is the same for all forces, where F is any one of the forces and $$\theta $$ is the angle between the other two forces)
Your input ____
Questions Asked from Electrostatics (Numerical)
Number in Brackets after Paper Indicates No. of Questions
JEE Advanced 2024 Paper 2 Online (2)
JEE Advanced 2022 Paper 2 Online (1)
JEE Advanced 2021 Paper 1 Online (2)
JEE Advanced 2020 Paper 2 Offline (2)
JEE Advanced 2020 Paper 1 Offline (2)
JEE Advanced 2018 Paper 2 Offline (1)
JEE Advanced 2015 Paper 1 Offline (1)
IIT-JEE 2012 Paper 1 Offline (1)
IIT-JEE 2011 Paper 1 Offline (1)
IIT-JEE 2009 Paper 2 Offline (1)
JEE Advanced Subjects
Physics
Mechanics
Units & Measurements Motion Laws of Motion Work Power & Energy Impulse & Momentum Rotational Motion Properties of Matter Heat and Thermodynamics Simple Harmonic Motion Waves Gravitation
Electricity
Electrostatics Current Electricity Capacitor Magnetism Electromagnetic Induction Alternating Current Electromagnetic Waves
Optics
Modern Physics
Chemistry
Physical Chemistry
Some Basic Concepts of Chemistry Structure of Atom Redox Reactions Gaseous State Chemical Equilibrium Ionic Equilibrium Solutions Thermodynamics Chemical Kinetics and Nuclear Chemistry Electrochemistry Solid State Surface Chemistry
Inorganic Chemistry
Periodic Table & Periodicity Chemical Bonding & Molecular Structure Isolation of Elements Hydrogen s-Block Elements p-Block Elements d and f Block Elements Coordination Compounds Salt Analysis
Organic Chemistry
Mathematics
Algebra
Quadratic Equation and Inequalities Sequences and Series Mathematical Induction and Binomial Theorem Matrices and Determinants Permutations and Combinations Probability Vector Algebra 3D Geometry Statistics Complex Numbers
Trigonometry
Coordinate Geometry
Calculus