**M**$$\to$$

**N**, the rate of disappearance of

**M**increases by a factor of 8 upon doubling the concentration of

**M**. The order of the reaction with respect to

**M**is

X and Y are two volatile liquids with molar weights of 10 g mol^{$$-$$1} and 40 g mol^{$$-$$1}, respectively. Two cotton plugs, one soaked in X and the other soaked in Y, are simultaneously placed at the ends of a tube of length L = 24 cm, as shown in the figure. The tube is filled with an inert gas at 1 atmosphere pressure and a temperature of 300 K. Vapours of X and Y react to form a product which is first observed at a distance d cm from the plug soaked in X. Take X and Y to have equal molecular diameters and assume ideal behaviour for the inert gas and the two vapours.

X and Y are two volatile liquids with molar weights of 10 g mol^{$$-$$1} and 40 g mol^{$$-$$1}, respectively. Two cotton plugs, one soaked in X and the other soaked in Y, are simultaneously placed at the ends of a tube of length L = 24 cm, as shown in the figure. The tube is filled with an inert gas at 1 atmosphere pressure and a temperature of 300 K. Vapours of X and Y react to form a product which is first observed at a distance d cm from the plug soaked in X. Take X and Y to have equal molecular diameters and assume ideal behaviour for the inert gas and the two vapours.

The experimental value of d is found to be smaller than the estimate obtained using Graham's law. This is due to

In the reaction, P + Q $$\to$$ R + S, the time taken for 75% reaction of P is twice the time taken for 50% reaction of P. The concentration of Q varies with reaction time as shown in the figure. The overall order of the reaction is