A disk of radius $${a \over 4}$$ having a uniformly distributed charge 6C is placed in the xy-plane with its centre at ($$-$$a/2, 0, 0). A rod of length a carrying a uniformly distributed charge 8C is placed on the x-axis from x = a/4 to x = 5a/4. Two points charges $$-$$7C and 3C are placed at (a/4, $$-$$a/4, 0) and ($$-$$3a/4, 3a/4, 0), respectively. Consider a cubical surface formed by six surfaces $$x=\pm a/2,y=\pm a/2,z=\pm a/2$$. The electric flux through this cubical surface is

Three concentric metallic spherical shells of radii $$R,2R,3R$$ are given charges $$Q_1,Q_2,Q_3$$, respectively. It is found that the surface charge densities on the outer surfaces of the shells are equal. Then, the ratio of the charges given to the shells, $$Q_1:Q_2:Q_3$$, is

Six point charges, each of the same magnitude q, are arranged in different manners as shown in Column II. In each case, a point M and a line PQ passing through M are shown. Let E be the electric field and V be the electric potential at M (potential at infinity is zero) due to the given charge distribution when it is at rest. Now, the whole system is set into rotation with a constant angular velocity about the line PQ. Let B be the magnetic field at M and $$\mu$$ be the magnetic moment of the system in this condition. Assume each rotating charge to be equivalent to a steady current.

Column I | Column II | ||
---|---|---|---|

(A) | $$E=0$$ | (P) | Charge are at the corners of a regular hexagon. M is at the centre of the hexagon. PQ is perpendicular to the plane of the hexagon. |

(B) | $$V\ne 0$$ | (Q) | Charges are on a line perpendicular to PQ at equal intervals. M is the midpoint between the two innermost charges. |

(C) | $$B=0$$ | (R) | Charges are placed on two coplanar insulating rings at equal intervals. M is the common centre of the rings. PQ is perpendicular to the plane of the rings. |

(D) | $$\mu \ne 0$$ | (S) | Charges are placed at the corners of a rectangle of sides a and 2a and at the mid points of the longer sides. M is at the centre of the rectangle. PQ is parallel to the longer sides. |

(T) | Charges are placed on two coplanar, identical insulating rings are equal intervals. M is the midpoint between the centres of the rings. PQ is perpendicular to the line joining the centres and coplanar to the rings. |