1
JEE Advanced 2019 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
A free hydrogen atom after absorbing a photon of wavelength $$\lambda $$a gets excited from the state n = 1 to the state n = 4. Immediately after that the electron jumps to n = m state by emitting a photon of wavelength $$\lambda $$e. Let the change in momentum of atom due to the absorption and the emission be $$\Delta {p_a}$$ and $$\Delta {p_e}$$, respectively. If $${{{\lambda _a}} \over {{\lambda _e}}} = {1 \over 5}$$, which of the option(s) is/are correct? [Use hc = 1242 eVnm; 1 nm = 10-9 m, h and c are Planck's constant and speed of light in vacuum, respectively]
2
JEE Advanced 2018 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
In a radioactive decay chain, $${}_{90}^{232}Th$$ nucleus decays to $${}_{82}^{212}Pb$$ nucleus. Let $${N_\alpha }$$ and $${N_\beta }$$ be the number of $$\alpha $$ and $${\beta ^ - }$$ particles, respectively, emitted in this decay process. Which of the following statements is (are) true?
3
JEE Advanced 2016 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
Highly excited states for hydrogen-like atoms (also called Rydberg states) with nuclear charge Ze are defined by their principle quantum number n, where n >> 1. Which of the following statement(s) is(are) true?
4
JEE Advanced 2015 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
A fission reaction is given by $$_{92}^{236}U \to _{54}^{140}Xe + _{38}^{94}Sr + x + y$$, where x and y are two particles. Considering $$_{92}^{236}U$$ to be at rest, the kinetic energies of the products are denoted by $${K_{Xe}},{K_{Sr}},{K_x}(2MeV)$$ $$
\text { and } \mathrm{K}_{\mathrm{y}}(2 \mathrm{MeV})
$$, respectively. Let the binding energies per nucleon of $$_{92}^{236}U$$, $$_{54}^{140}Xe$$ and $$_{38}^{94}Sr$$ be 7.5 MeV, 8.5 MeV and 8.5 MeV, respectively. Considering different conservation laws, the correct options is/are
Questions Asked from Atoms and Nuclei (MCQ (Multiple Correct Answer))
Number in Brackets after Paper Indicates No. of Questions
JEE Advanced 2022 Paper 1 Online (1)
JEE Advanced 2020 Paper 2 Offline (1)
JEE Advanced 2020 Paper 1 Offline (1)
JEE Advanced 2019 Paper 2 Offline (1)
JEE Advanced 2018 Paper 2 Offline (1)
JEE Advanced 2016 Paper 1 Offline (1)
JEE Advanced 2015 Paper 2 Offline (1)
JEE Advanced 2013 Paper 2 Offline (1)
IIT-JEE 2008 Paper 1 Offline (1)
JEE Advanced Subjects
Physics
Mechanics
Units & Measurements
Motion
Laws of Motion
Work Power & Energy
Impulse & Momentum
Rotational Motion
Properties of Matter
Heat and Thermodynamics
Simple Harmonic Motion
Waves
Gravitation
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Some Basic Concepts of Chemistry
Structure of Atom
Redox Reactions
Gaseous State
Equilibrium
Solutions
States of Matter
Thermodynamics
Chemical Kinetics and Nuclear Chemistry
Electrochemistry
Solid State & Surface Chemistry
Inorganic Chemistry
Periodic Table & Periodicity
Chemical Bonding & Molecular Structure
Isolation of Elements
Hydrogen
s-Block Elements
p-Block Elements
d and f Block Elements
Coordination Compounds
Salt Analysis
Organic Chemistry
Mathematics
Algebra
Quadratic Equation and Inequalities
Sequences and Series
Mathematical Induction and Binomial Theorem
Matrices and Determinants
Permutations and Combinations
Probability
Vector Algebra and 3D Geometry
Statistics
Complex Numbers
Trigonometry
Coordinate Geometry
Calculus