1
JEE Advanced 2020 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
A circular coil of radius R and N turns has negligible resistance. As shown in the schematic figure,
its two ends are connected to two wires and it is hanging by those wires with its plane being vertical.
The wires are connected to a capacitor with charge Q through a switch. The coil is in a horizontal
uniform magnetic field Bo parallel to the plane of the coil. When the switch is closed, the capacitor
gets discharged through the coil in a very short time. By the time the capacitor is discharged fully,
magnitude of the angular momentum gained by the coil will be (assume that the discharge time is so
short that the coil has hardly rotated during this time)
2
JEE Advanced 2017 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-0.75
A symmetric star shaped conducting wire loop is carrying a steady state current $${\rm I}$$ as shown in the figure. The distance between the diametrically opposite vertices of the star is $$4a.$$ The magnitude of the magnetic field at the center of the loop is
3
JEE Advanced 2017 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-0.75
A charged particle (electron or proton) is introduced at the origin (x=0,y=0,z=0) with a given initial velocity $$\overrightarrow v .$$ A uniform electric field $$\overrightarrow E $$ and a uniform magnetic field $$\overrightarrow B $$ exist everywhere. The velocity $$\overrightarrow v ,$$ electric field $$\overrightarrow E $$ and magnetic field $$\overrightarrow B $$ are given in column $$1,2$$ and $$3,$$ respectively. The quantities $${E_0},{B_0}$$ are positive in magnitude.
Column 1 | Column 2 | Column 3 | |||
---|---|---|---|---|---|
(I) | Electron with $$\overrightarrow v = 2{{{E_0}} \over {{B_0}}}\widehat x$$ | (i) | $$\overrightarrow E = {E_0}\widehat z$$ | (P) | $$\overrightarrow B = - {B_0}\widehat x$$ |
(II) | Electron with $$\overrightarrow v = {{{E_0}} \over {{B_0}}}\widehat y$$ | (ii) | $$\overrightarrow E = - {E_0}\widehat y$$ | (Q) | $$\overrightarrow B = {B_0}\widehat x$$ |
(III) | Proton with $$\overrightarrow v = 0$$ | (iii) | $$\overrightarrow E = - {E_0}\widehat x$$ | (R) | $$\overrightarrow B = {B_0}\widehat y$$ |
(IV) | Proton with $$\overrightarrow v = 2{{{E_0}} \over {{B_0}}}\widehat x$$ | (iv) | $$\overrightarrow E = {E_0}\widehat x$$ | (S) | $$\overrightarrow B = {B_0}\widehat z$$ |
In which case will the particle move in a straight line with constant velocity?
4
JEE Advanced 2017 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-0.75
A charged particle (electron or proton) is introduced at the origin (x=0,y=0,z=0) with a given initial velocity $$\overrightarrow v .$$ A uniform electric field $$\overrightarrow E $$ and a uniform magnetic field $$\overrightarrow B $$ exist everywhere. The velocity $$\overrightarrow v ,$$ electric field $$\overrightarrow E $$ and magnetic field $$\overrightarrow B $$ are given in column $$1,2$$ and $$3,$$ respectively. The quantities $${E_0},{B_0}$$ are positive in magnitude.
Column 1 | Column 2 | Column 3 | |||
---|---|---|---|---|---|
(I) | Electron with $$\overrightarrow v = 2{{{E_0}} \over {{B_0}}}\widehat x$$ | (i) | $$\overrightarrow E = {E_0}\widehat z$$ | (P) | $$\overrightarrow B = - {B_0}\widehat x$$ |
(II) | Electron with $$\overrightarrow v = {{{E_0}} \over {{B_0}}}\widehat y$$ | (ii) | $$\overrightarrow E = - {E_0}\widehat y$$ | (Q) | $$\overrightarrow B = {B_0}\widehat x$$ |
(III) | Proton with $$\overrightarrow v = 0$$ | (iii) | $$\overrightarrow E = - {E_0}\widehat x$$ | (R) | $$\overrightarrow B = {B_0}\widehat y$$ |
(IV) | Proton with $$\overrightarrow v = 2{{{E_0}} \over {{B_0}}}\widehat x$$ | (iv) | $$\overrightarrow E = {E_0}\widehat x$$ | (S) | $$\overrightarrow B = {B_0}\widehat z$$ |
In which case will the particle describe a helical path with axis along the positive $$z$$ direction?
Questions Asked from Magnetism (MCQ (Single Correct Answer))
Number in Brackets after Paper Indicates No. of Questions
JEE Advanced 2024 Paper 2 Online (1)
JEE Advanced 2024 Paper 1 Online (1)
JEE Advanced 2022 Paper 2 Online (1)
JEE Advanced 2022 Paper 1 Online (1)
JEE Advanced 2021 Paper 2 Online (2)
JEE Advanced 2020 Paper 1 Offline (2)
JEE Advanced 2017 Paper 2 Offline (1)
JEE Advanced 2017 Paper 1 Offline (3)
JEE Advanced 2014 Paper 2 Offline (2)
JEE Advanced 2013 Paper 2 Offline (2)
IIT-JEE 2012 Paper 2 Offline (2)
IIT-JEE 2011 Paper 1 Offline (1)
IIT-JEE 2011 Paper 2 Offline (1)
IIT-JEE 2010 Paper 1 Offline (3)
IIT-JEE 2008 Paper 2 Offline (1)
IIT-JEE 2007 Paper 2 Offline (2)
JEE Advanced Subjects
Physics
Mechanics
Units & Measurements Motion Laws of Motion Work Power & Energy Impulse & Momentum Rotational Motion Properties of Matter Heat and Thermodynamics Simple Harmonic Motion Waves Gravitation
Electricity
Electrostatics Current Electricity Capacitor Magnetism Electromagnetic Induction Alternating Current Electromagnetic Waves
Optics
Modern Physics
Chemistry
Physical Chemistry
Some Basic Concepts of Chemistry Structure of Atom Redox Reactions Gaseous State Chemical Equilibrium Ionic Equilibrium Solutions Thermodynamics Chemical Kinetics and Nuclear Chemistry Electrochemistry Solid State Surface Chemistry
Inorganic Chemistry
Periodic Table & Periodicity Chemical Bonding & Molecular Structure Isolation of Elements Hydrogen s-Block Elements p-Block Elements d and f Block Elements Coordination Compounds Salt Analysis
Organic Chemistry
Mathematics
Algebra
Quadratic Equation and Inequalities Sequences and Series Mathematical Induction and Binomial Theorem Matrices and Determinants Permutations and Combinations Probability Vector Algebra 3D Geometry Statistics Complex Numbers
Trigonometry
Coordinate Geometry
Calculus