1
GATE ECE 2013
MCQ (Single Correct Answer)
+1
-0.3
Two system with impulse responses h1(t) and h2(t) are connected in cascade. Then the overall impulse response of the cascaded system is given by
2
GATE ECE 2013
MCQ (Single Correct Answer)
+1
-0.3
The impulse response of a system is h(t) = t u(t). For an input u(t - 1), the output is
3
GATE ECE 2011
MCQ (Single Correct Answer)
+1
-0.3
The differential equation $$100{{{d^2}y} \over {dt}} - 20{{dy} \over {dt}} + y = x\left( t \right)$$ describes a system with an input x(t) and output y(t). The system, which is initially relaxed, is excited by a unit step input. The output y(t) can be represented by the waveform
4
GATE ECE 2008
MCQ (Single Correct Answer)
+1
-0.3
The impulse response h(t) of a linear time-invariant continuous time system is described by $$h\left( t \right) = \,\,\exp \left( {\alpha t} \right)u\left( t \right)\,\,\, + \,\,\exp \left( {\beta t} \right)u\left( { - t} \right),$$ where u(t) denotes the unit step function, and $$\alpha $$ and $$\beta $$ are real constants. This system is stable if
Questions Asked from Continuous Time Linear Invariant System (Marks 1)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE Subjects
Signals and Systems
Representation of Continuous Time Signal Fourier Series Discrete Time Signal Fourier Series Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Transmission of Signal Through Continuous Time LTI Systems Discrete Time Linear Time Invariant Systems Sampling Continuous Time Signal Laplace Transform Discrete Fourier Transform and Fast Fourier Transform Transmission of Signal Through Discrete Time Lti Systems Miscellaneous Fourier Transform
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics