1
GATE ECE 2001
+1
-0.3
The transfer function of a system is given by $$H\left( s \right) = {1 \over {{s^2}\left( {s - 2} \right)}}$$. The impulse response of the system is
A
$$\left( {{t^2} * {e^{ - 2t}}} \right)U\left( t \right)$$
B
$$\left( {t * {e^{2t}}} \right)U\left( t \right)$$
C
$$\left( {{t^2}{e^{ - 2t}}} \right)U\left( t \right)$$
D
$$\left( {t{e^{ - 2t}}} \right)U\left( t \right)$$
2
GATE ECE 2000
+1
-0.3
A system with an input x(t) and an output y(t) is described by the relation: y(t) = t x(t). This system is
A
linear and time-invariant.
B
linear and time-varying.
C
non-linear and time-invariant.
D
non-linear and time-varying.
3
GATE ECE 1998
+1
-0.3
The transfer function of a zero - order - hold system is
A
$$\left( {1/s} \right)\left( {1 + {e^{ - sT}}} \right)$$v
B
$$\left( {1/s} \right)\left( {1 - {e^{ - sT}}} \right)$$
C
$$1 - \left( {1/s} \right){e^{ - sT}}$$
D
$$1 + \left( {1/s} \right){e^{ - sT}}$$
4
GATE ECE 1998
+1
-0.3
The unit impulse response of a linear time invariant system is the unit step function u(t). For t>0, the response of the system to an excitation e-at u(t), a>0 will be
A
a e-at
B
(1/a) (1 - e-at)
C
a(1 - e-at)
D
1 - e-at)
EXAM MAP
Medical
NEET