1
GATE ECE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
The pole-zero diagram of a causal and stable discrete-time system is shown in the figure. The zero at the origin has
multiplicity 4. The impulse response of the system is ℎ[n]. If ℎ[0] =1, we can conclude.


2
GATE ECE 2015 Set 1
MCQ (Single Correct Answer)
+2
-0.6
For the discrete-time system shown in the figure, the poles of the system transfer function are located at

3
GATE ECE 2014 Set 3
Numerical
+2
-0
The z-transform of the sequence x$$\left[ n \right]$$ is given by x(z)= $${1 \over {{{(1 - 2{z^{ - 1}})}^2}}}$$ , with the region of convergence $$\left| z \right| > 2$$. Then, $$x\left[ 2 \right]$$ is ____________________.
Your input ____
4
GATE ECE 2014 Set 3
Numerical
+2
-0
Let $${H_1}(z) = {(1 - p{z^{ - 1}})^{ - 1}},{H_2}(z) = {(1 - q{z^{^{ - 1}}})^{ - 1}}$$ , H(z) =$${H_1}(z)$$ +r $${H_2}$$. The quantities p, q, r are real numbers. Consider , p=$${1 \over 2}$$, q=-$${1 \over 4}$$ $$\left| r \right|$$ <1. If the zero H(z) lies on the unit circle, the r = ____________________________.
Your input ____
Questions Asked from Discrete Time Signal Z Transform (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Representation of Continuous Time Signal Fourier Series
Discrete Time Signal Fourier Series Fourier Transform
Discrete Time Signal Z Transform
Continuous Time Linear Invariant System
Transmission of Signal Through Continuous Time LTI Systems
Discrete Time Linear Time Invariant Systems
Sampling
Continuous Time Signal Laplace Transform
Discrete Fourier Transform and Fast Fourier Transform
Transmission of Signal Through Discrete Time Lti Systems
Miscellaneous
Fourier Transform
Communications
Electromagnetics
General Aptitude