1
GATE ECE 2016 Set 3
+2
-0.6
The ROC (region of convergence) of the z-transform of a discrete-time signal is represented by the shaded region in the z-plane. If the signal $$x\left[ n \right] = \,{\left( {2.0} \right)^{\left| n \right|}}$$ , $$- \infty < n < + \infty$$ then the ROC of its z-transform is represented by
A
B
C
D
2
GATE ECE 2016 Set 1
Numerical
+2
-0
A sequence x$$\left[ n \right]$$ is specified as $$\left[ {\matrix{ {x\left[ n \right]} \cr {x\left[ {n - 1} \right]} \cr } } \right] = {\left[ {\matrix{ 1 \cr 1 \cr } \,\matrix{ 1 \cr 0 \cr } } \right]^n}\left[ {\matrix{ 1 \cr 0 \cr } } \right]$$, for n $$\ge$$2.
The initial conditions are x$$\left[ 0 \right]$$ = 1, x$$\left[ 1 \right]$$=1 and x$$\left[ n \right]$$=0 for n< 0. The value of x$$\left[ 12 \right]$$ is _____________________.
3
GATE ECE 2015 Set 3
+2
-0.6
A realization of a stable discrete time system is shown in the figure. If the system is excited by a unit step sequence input x[n ] , the response y[ n] is
A
$$4{\left( { - {1 \over 3}} \right)^n}u\left[ n \right] - 5{\left( { - {2 \over 3}} \right)^n}u\left[ n \right]$$
B
$$5{\left( { - {2 \over 3}} \right)^n}u\left[ n \right] - 3{\left( { - {1 \over 3}} \right)^n}u\left[ n \right]$$
C
$$5{\left( {{1 \over 3}} \right)^n}u\left[ n \right] - 5{\left( {{2 \over 3}} \right)^n}u\left[ n \right]$$
D
$$5{\left( {{2 \over 3}} \right)^n}u\left[ n \right] - 5{\left( {{1 \over 3}} \right)^n}u\left[ n \right]$$
4
GATE ECE 2015 Set 3
+2
-0.6
Suppose x $$\left[ n \right]$$ is an absolutely summable discrete-time signal. Its z-transform is a rational function with two poles and two zeroes. The poles are at z = ± 2j. Which one of the following statements is TRUE for the signal x=$$\left[ n \right]$$ ?
A
It is a finite duration signal.
B
It is a causal signal.
C
It is a non-causal signal.
D
It is a periodic signal.
EXAM MAP
Medical
NEET