1
GATE ECE 2016 Set 2
MCQ (Single Correct Answer)
+1
-0.3
Let the electric field vector of a plane electromagnetic wave propagating in a homogenous medium be expressed as $$E = \widehat x{E_x}\,{e^{ - j\left( {wt - \beta z} \right)}},$$ , where the propagation constant $$\beta $$ is a function of the angular
frequency $$\omega $$. Assume that $$\beta \left( \omega \right)$$ and $${E_x}$$ are known and are real. From the information available, which one of the following CANNOT be determined?
2
GATE ECE 2015 Set 2
MCQ (Single Correct Answer)
+1
-0.3
The electric field of a uniform plane electromagnetic wave is
$$$\vec E = \left( {{{\overrightarrow a }_x} + j4{{\overrightarrow a }_y}} \right)\exp \left[ {j\left( {2\pi \times {{10}^7}t - 0.2z} \right)} \right]$$$
The polarization of the wave is
3
GATE ECE 2015 Set 1
Numerical
+1
-0
The electric field component of a plane wave traveling in a lossless dielectric medium is given by
$$$\overrightarrow E \left( {z,t} \right) = {\widehat a_y}2\cos \left( {{{10}^8}t - {z \over {\sqrt 2 }}} \right)V/m.$$$
The wavelength )in m) for the wave is
Your input ____
4
GATE ECE 2014 Set 2
MCQ (Single Correct Answer)
+1
-0.3
Which one of the following field patterns represents a TEM wave traveling in the positive $$x$$ direction?
Questions Asked from Uniform Plane Waves (Marks 1)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE 2022 (1)
GATE ECE 2016 Set 3 (1)
GATE ECE 2016 Set 2 (1)
GATE ECE 2015 Set 2 (1)
GATE ECE 2015 Set 1 (1)
GATE ECE 2014 Set 2 (1)
GATE ECE 2014 Set 1 (1)
GATE ECE 2012 (2)
GATE ECE 2007 (1)
GATE ECE 2006 (1)
GATE ECE 2005 (1)
GATE ECE 2003 (1)
GATE ECE 2001 (1)
GATE ECE 2000 (1)
GATE ECE 1998 (4)
GATE ECE 1995 (2)
GATE ECE 1994 (1)
GATE ECE Subjects
Signals and Systems
Representation of Continuous Time Signal Fourier Series
Fourier Transform
Continuous Time Signal Laplace Transform
Discrete Time Signal Fourier Series Fourier Transform
Discrete Fourier Transform and Fast Fourier Transform
Discrete Time Signal Z Transform
Continuous Time Linear Invariant System
Discrete Time Linear Time Invariant Systems
Transmission of Signal Through Continuous Time LTI Systems
Sampling
Transmission of Signal Through Discrete Time Lti Systems
Miscellaneous
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics