1
GATE ECE 2014 Set 1
MCQ (Single Correct Answer)
+1
-0.3
A two - port network has scattering parameters given by $$[S]$$ $$ = \left[ {\matrix{ {{s_{11}}} & {{s_{12}}} \cr {{s_{21}}} & {{s_{22}}} \cr } } \right].$$
If the port - 2 of the two - port is short circuited, the $${{s_{11}}}$$ parameter for the resultant one - port network is
A
$${{{s_{11}} - {s_{11}}{s_{22}} + {s_{12}}{s_{21}}} \over {1 + {s_{22}}}}$$
B
$${{{s_{11}} + {s_{11}}{s_{22}} - {s_{12}}{s_{21}}} \over {1 + {s_{22}}}}$$
C
$${{{s_{11}} + {s_{11}}{s_{22}} + {s_{12}}{s_{21}}} \over {1 - {s_{22}}}}$$
D
$${{{s_{11}} - {s_{11}}{s_{22}} + {s_{12}}{s_{21}}} \over {1 - {s_{22}}}}$$
2
GATE ECE 2012
MCQ (Single Correct Answer)
+1
-0.3
The electric field of a uniform plane electromagnetic wave in free spce, along the positive x direction, is given by $$\vec E = 10\left( {{{\widehat a}_y} + j{{\widehat a}_z}} \right){e^{ - j25x}}.$$ The frequency and polarization of the wave respectively are
A
$$1.2 GHz$$ and left circular
B
$$4 Hz$$ and left circular
C
$$1.2 GHz$$ and right circular
D
$$4 Hz$$ and right circular
3
GATE ECE 2012
MCQ (Single Correct Answer)
+1
-0.3
A plane wave propagating in air with $$\vec E = \left( {8{{\widehat a}_x} + 6{{\widehat a}_y} + 5{{\widehat a}_z}} \right){\mkern 1mu} {\mkern 1mu} {e^{j\left( {\omega t + 3x - 4y} \right)}}{\mkern 1mu} {\mkern 1mu} V/m$$ is incident on a perfectly conducting slab positioned at $$x \le 0$$. The $$\overrightarrow E $$ field of the reflected wave is
A
$$\left( { - 8{{\widehat a}_x} - 6{{\widehat a}_y} - 5{{\widehat a}_z}} \right){\mkern 1mu} {e^{j\left( {\omega t + 3x + 4y} \right)}}{\mkern 1mu} {\mkern 1mu} V/m$$
B
$$\left( { - 8{{\widehat a}_x} + 6{{\widehat a}_y} - 5{{\widehat a}_z}} \right){\mkern 1mu} {e^{j\left( {\omega t + 3x + 4y} \right)}}{\mkern 1mu} {\mkern 1mu} V/m$$
C
$$\left( { - 8{{\widehat a}_x} - 6{{\widehat a}_y} - 5{{\widehat a}_z}} \right){\mkern 1mu} {e^{j\left( {\omega t - 3x - 4y} \right)}}{\mkern 1mu} {\mkern 1mu} V/m$$
D
$$\left( { - 8{{\widehat a}_x} + 6{{\widehat a}_y} - 5{{\widehat a}_z}} \right){\mkern 1mu} {e^{j\left( {\omega t - 3x - 4y} \right)}}{\mkern 1mu} {\mkern 1mu} V/m$$
4
GATE ECE 2007
MCQ (Single Correct Answer)
+1
-0.3
A plane wave of wavelength $$\lambda $$ is traveling in a direction making an angle $${{{30}^ \circ }}$$ with positive $$x$$-axis and $${{{90}^ \circ }}$$ with positiv $$y$$-axis. The $$\overrightarrow E $$ field of the plane wave can be represented as ($${E_0}$$ is a constant)
A
$$\vec E = \widehat y\,\,{E_0}{\mkern 1mu} {e^{j\left( {\omega t - {{\sqrt 3 {\kern 1pt} \pi } \over \lambda }x - {\pi \over \lambda }z} \right)}}$$
B
$$\vec E = \widehat y\,\,{E_0}{\mkern 1mu} {e^{j\left( {\omega t - {\pi \over \lambda }x - {{\sqrt 3 {\kern 1pt} \pi } \over \lambda }z} \right)}}$$
C
$$\vec E = \widehat y\,\,{E_0}{\mkern 1mu} {e^{j\left( {\omega t + {{\sqrt 3 {\kern 1pt} \pi } \over \lambda }x + {\pi \over \lambda }z} \right)}}$$
D
$$\vec E = \widehat y\,\,{\mkern 1mu} {E_0}{\mkern 1mu} {e^{j\left( {\omega t - {\pi \over \lambda }x + {{\sqrt 3 {\kern 1pt} \pi } \over \lambda }z} \right)}}$$
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12