1
GATE ECE 2016 Set 1
MCQ (Single Correct Answer)
+1
-0.3
Let $${M^4} = {\rm I}$$ (where $${\rm I}$$ denotes the identity matrix) and $$M \ne {\rm I},\,\,{M^2} \ne {\rm I}$$ and $${M^3} \ne {\rm I}$$. Then, for any natural number $$k, $$ $${M^{ - 1}}$$ equals:
A
$${M^{4k + 1}}$$
B
$${M^{4k + 2}}$$
C
$${M^{4k + 3}}$$
D
$${M^{4k}}$$
2
GATE ECE 2016 Set 3
MCQ (Single Correct Answer)
+1
-0.3
Consider a $$2 \times 2$$ square matrix $$A = \left[ {\matrix{ \sigma & x \cr \omega & \sigma \cr } } \right]$$
Where $$x$$ is unknown. If the eigenvalues of the matrix $$A$$ are $$\left( {\sigma + j\omega } \right)$$ and $$\left( {\sigma - j\omega } \right)$$, then $$x$$ is equal to
A
$$ + j\omega $$
B
$$ - j\omega $$
C
$$ + \omega $$
D
$$ - \omega $$
3
GATE ECE 2016 Set 2
Numerical
+1
-0
The value of $$x$$ for which the matrix $$A = \left[ {\matrix{ 3 & 2 & 4 \cr 9 & 7 & {13} \cr { - 6} & { - 4} & { - 9 + x} \cr } } \right]$$ has zero as an eigen value is __________.
Your input ____
4
GATE ECE 2015 Set 3
MCQ (Single Correct Answer)
+1
-0.3
For $$A = \left[ {\matrix{ 1 & {\tan x} \cr { - \tan x} & 1 \cr } } \right],$$ the determinant of $${A^T}\,{A^{ - 1}}$$ is
A
$${\sec ^2}x$$
B
$$\cos 4x$$
C
$$1$$
D
$$0$$
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12