1
GATE ECE 2014 Set 1
Numerical
+1
-0
$$A$$ real $$\left( {4\,\, \times \,\,4} \right)$$ matrix $$A$$ satisfies the equation $${A^2} = {\rm I},$$ where $${\rm I}$$ is the $$\left( {4\,\, \times \,\,4} \right)$$ identity matrix. The positive eigen value of $$A$$ is _______.
2
GATE ECE 2013
+1
-0.3
The minimum eigenvalue of the following matrix is $$\left[ {\matrix{ 3 & 5 & 2 \cr 5 & {12} & 7 \cr 2 & 7 & 5 \cr } } \right]$$
A
$$0$$
B
$$1$$
C
$$2$$
D
$$3$$
3
GATE ECE 2013
+1
-0.3
Let $$A$$ be an $$m\,\, \times \,\,n$$ matrix and $$B$$ an $$n\,\, \times \,\,m$$ matrix. It is given that determinant $$\left( {{{\rm I}_m} + AB} \right) =$$determinant $$\left( {{{\rm I}_n} + BA} \right),$$ where $${{{\rm I}_k}}$$ is the $$k \times k$$ identity matrix. Using the above property, the determinant of the matrix given below is $$\left[ {\matrix{ 2 & 1 & 1 & 1 \cr 1 & 2 & 1 & 1 \cr 1 & 1 & 2 & 1 \cr 1 & 1 & 1 & 2 \cr } } \right]$$
A
$$2$$
B
$$5$$
C
$$8$$
D
$$16$$
4
GATE ECE 2012
+1
-0.3
Given that $$A = \left[ {\matrix{ { - 5} & { - 3} \cr 2 & 0 \cr } } \right]$$ and $${\rm I} = \left[ {\matrix{ 1 & 0 \cr 0 & 1 \cr } } \right],$$ the value of $${A^3}$$ is
A
$$15A+12$$ $${\rm I}$$
B
$$19A+30$$ $${\rm I}$$
C
$$17A+15$$ $${\rm I}$$
D
$$17A+21$$ $${\rm I}$$
EXAM MAP
Medical
NEET