1
GATE ECE 2016 Set 3
MCQ (Single Correct Answer)
+1
-0.3
Consider a $$2 \times 2$$ square matrix $$A = \left[ {\matrix{
\sigma & x \cr
\omega & \sigma \cr
} } \right]$$
Where $$x$$ is unknown. If the eigenvalues of the matrix $$A$$ are $$\left( {\sigma + j\omega } \right)$$ and $$\left( {\sigma - j\omega } \right)$$, then $$x$$ is equal to
Where $$x$$ is unknown. If the eigenvalues of the matrix $$A$$ are $$\left( {\sigma + j\omega } \right)$$ and $$\left( {\sigma - j\omega } \right)$$, then $$x$$ is equal to
2
GATE ECE 2015 Set 2
MCQ (Single Correct Answer)
+1
-0.3
The value of $$'x'$$ for which all the eigenvalues of the matrix given below are real is $$\left[ {\matrix{
{10} & {5 + j} & 4 \cr
x & {20} & 2 \cr
4 & 2 & { - 10} \cr
} } \right]$$
3
GATE ECE 2015 Set 1
Numerical
+1
-0
Consider system of linear equations :
$$$x-2y+3z=-1$$$
$$$x-3y+4z=1$$$ and
$$$-2x+4y-6z=k,$$$
The value of $$'k'$$ for which the system has infinitely many solutions is _______.
Your input ____
4
GATE ECE 2015 Set 1
Numerical
+1
-0
The value of $$'P'$$ such that the vector $$\left[ {\matrix{
1 \cr
2 \cr
3 \cr
} } \right]$$ is an eigenvector of the matrix $$\left[ {\matrix{
4 & 1 & 2 \cr
P & 2 & 1 \cr
{14} & { - 4} & {10} \cr
} } \right]$$ is ________.
Your input ____
Questions Asked from Linear Algebra (Marks 1)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE 2024 (1)
GATE ECE 2023 (1)
GATE ECE 2022 (1)
GATE ECE 2018 (2)
GATE ECE 2017 Set 1 (2)
GATE ECE 2016 Set 2 (1)
GATE ECE 2016 Set 1 (1)
GATE ECE 2016 Set 3 (1)
GATE ECE 2015 Set 2 (1)
GATE ECE 2015 Set 1 (2)
GATE ECE 2015 Set 3 (1)
GATE ECE 2014 Set 3 (1)
GATE ECE 2014 Set 2 (3)
GATE ECE 2014 Set 1 (3)
GATE ECE 2013 (2)
GATE ECE 2012 (1)
GATE ECE 2011 (1)
GATE ECE 2010 (1)
GATE ECE 2008 (2)
GATE ECE 2006 (2)
GATE ECE 2000 (1)
GATE ECE 1998 (1)
GATE ECE 1994 (2)
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Representation of Continuous Time Signal Fourier Series Discrete Time Signal Fourier Series Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Transmission of Signal Through Continuous Time LTI Systems Discrete Time Linear Time Invariant Systems Sampling Continuous Time Signal Laplace Transform Discrete Fourier Transform and Fast Fourier Transform Transmission of Signal Through Discrete Time Lti Systems Miscellaneous Fourier Transform
Communications
Electromagnetics
General Aptitude