1
GATE ME 2008
MCQ (Single Correct Answer)
+1
-0.3
In an $$M/M/1$$ queuing system, the number of arrivals in an interval of length $$T$$ is a Poisson random variable (i.e., the probability of there being $$n$$ arrivals in an interval of length $$T$$ is $${{{e^{ - \lambda T}}{{\left( {\lambda T} \right)}^n}} \over {n!}}$$). The probability density function $$f(t)$$ of the inter-arrival time is given by
2
GATE ME 2006
MCQ (Single Correct Answer)
+1
-0.3
The number of customers arriving at a railway reservation counter is Poisson distributed with an arrival rate of eight customers per hour. The reservation clerk at this counter takes six minutes per customer on an average with an exponentially distributed service time. The average number of the customers in the queue will be.
3
GATE ME 2005
MCQ (Single Correct Answer)
+1
-0.3
Consider a single server queuing model with Poisson arrivals $$\left( {\lambda = 4/hour} \right)$$ and exponential service $$\left( {\mu = 4/hour} \right)$$. The number in the system is restricted to a maximum of $$10.$$ The probability that a person who comes in leaves without joining the queue is
4
GATE ME 1997
MCQ (Single Correct Answer)
+1
-0.3
The cost of providing service in a queuing system increases with
Questions Asked from Queuing (Marks 1)
Number in Brackets after Paper Indicates No. of Questions
GATE ME Subjects
Engineering Mechanics
Machine Design
Strength of Materials
Heat Transfer
Production Engineering
Industrial Engineering
Turbo Machinery
Theory of Machines
Engineering Mathematics
Fluid Mechanics
Thermodynamics
General Aptitude