1

GATE ME 2008

MCQ (Single Correct Answer)

+1

-0.3

In an $$M/M/1$$ queuing system, the number of arrivals in an interval of length $$T$$ is a Poisson random variable (i.e., the probability of there being $$n$$ arrivals in an interval of length $$T$$ is $${{{e^{ - \lambda T}}{{\left( {\lambda T} \right)}^n}} \over {n!}}$$). The probability density function $$f(t)$$ of the inter-arrival time is given by

2

GATE ME 2006

MCQ (Single Correct Answer)

+1

-0.3

The number of customers arriving at a railway reservation counter is Poisson distributed with an arrival rate of eight customers per hour. The reservation clerk at this counter takes six minutes per customer on an average with an exponentially distributed service time. The average number of the customers in the queue will be.

3

GATE ME 2005

MCQ (Single Correct Answer)

+1

-0.3

Consider a single server queuing model with Poisson arrivals $$\left( {\lambda = 4/hour} \right)$$ and exponential service $$\left( {\mu = 4/hour} \right)$$. The number in the system is restricted to a maximum of $$10.$$ The probability that a person who comes in leaves without joining the queue is

4

GATE ME 1997

MCQ (Single Correct Answer)

+1

-0.3

The cost of providing service in a queuing system increases with

Questions Asked from Queuing (Marks 1)

Number in Brackets after Paper Indicates No. of Questions

GATE ME Subjects

Engineering Mechanics

Machine Design

Strength of Materials

Heat Transfer

Production Engineering

Industrial Engineering

Turbo Machinery

Theory of Machines

Engineering Mathematics

Fluid Mechanics

Thermodynamics

General Aptitude