1

GATE ME 2013

MCQ (Single Correct Answer)

+1

-0.3

Customers arrive at a ticket counter at a rate of $$50$$ per hr and tickets are issued in the order of their arrival. The average time taken for issuing a ticket is $$1$$ $$min.$$ Assuming that customer arrivals form a Poisson process and service times are exponentially distributed, the average waiting time in queue in $$min$$ is

2

GATE ME 2011

MCQ (Single Correct Answer)

+1

-0.3

Cars arrive at a service station according to Poisson's distribution with a mean rate of $$5$$ per hour. The service time per car is exponential with a mean of $$10$$ minutes. At state, the average waiting time in the queue is

3

GATE ME 2010

MCQ (Single Correct Answer)

+1

-0.3

Little’s law is relationship between

4

GATE ME 2008

MCQ (Single Correct Answer)

+1

-0.3

In an $$M/M/1$$ queuing system, the number of arrivals in an interval of length $$T$$ is a Poisson random variable (i.e., the probability of there being $$n$$ arrivals in an interval of length $$T$$ is $${{{e^{ - \lambda T}}{{\left( {\lambda T} \right)}^n}} \over {n!}}$$). The probability density function $$f(t)$$ of the inter-arrival time is given by

Questions Asked from Queuing (Marks 1)

Number in Brackets after Paper Indicates No. of Questions

GATE ME Subjects

Engineering Mechanics

Strength of Materials

Theory of Machines

Engineering Mathematics

Machine Design

Fluid Mechanics

Turbo Machinery

Heat Transfer

Thermodynamics

Production Engineering

Industrial Engineering

General Aptitude