1
GATE ME 2013
MCQ (Single Correct Answer)
+1
-0.3
Customers arrive at a ticket counter at a rate of $$50$$ per hr and tickets are issued in the order of their arrival. The average time taken for issuing a ticket is $$1$$ $$min.$$ Assuming that customer arrivals form a Poisson process and service times are exponentially distributed, the average waiting time in queue in $$min$$ is
2
GATE ME 2011
MCQ (Single Correct Answer)
+1
-0.3
Cars arrive at a service station according to Poisson's distribution with a mean rate of $$5$$ per hour. The service time per car is exponential with a mean of $$10$$ minutes. At state, the average waiting time in the queue is
3
GATE ME 2010
MCQ (Single Correct Answer)
+1
-0.3
Little’s law is relationship between
4
GATE ME 2008
MCQ (Single Correct Answer)
+1
-0.3
In an $$M/M/1$$ queuing system, the number of arrivals in an interval of length $$T$$ is a Poisson random variable (i.e., the probability of there being $$n$$ arrivals in an interval of length $$T$$ is $${{{e^{ - \lambda T}}{{\left( {\lambda T} \right)}^n}} \over {n!}}$$). The probability density function $$f(t)$$ of the inter-arrival time is given by
Questions Asked from Queuing (Marks 1)
Number in Brackets after Paper Indicates No. of Questions
GATE ME Subjects
Engineering Mechanics
Strength of Materials
Theory of Machines
Engineering Mathematics
Machine Design
Fluid Mechanics
Turbo Machinery
Heat Transfer
Thermodynamics
Production Engineering
Industrial Engineering
General Aptitude