1
GATE ECE 2000
Subjective
+5
-0
For the amplifier of given figure,
$${I_C}\, = \,1.3\,mA,\,{R_C}\, = \,2\,k\Omega ,\,{R_E}\, = \,500\,\Omega ,$$
$${V_T}\, = \,26\,mV,\,\beta \, = \,100,\,{V_{CC}}\, = \,15V,$$
$${V_s}\, = \,0.01\,\sin \left( {\omega t} \right)\,V\,and\,{C_b}\, = \,{C_C}\, = \,10\,\mu F.$$
$${I_C}\, = \,1.3\,mA,\,{R_C}\, = \,2\,k\Omega ,\,{R_E}\, = \,500\,\Omega ,$$
$${V_T}\, = \,26\,mV,\,\beta \, = \,100,\,{V_{CC}}\, = \,15V,$$
$${V_s}\, = \,0.01\,\sin \left( {\omega t} \right)\,V\,and\,{C_b}\, = \,{C_C}\, = \,10\,\mu F.$$
(a)What is the small-signal voltage gain, $${A_V} = {V_0}/{V_s}?$$
(b)What is the approximate $${A_{v,}}\,\,if\,\,{C_e}\,\,$$ is removed?
(c)What will $${V_0}\,be\,if\,{C_b}$$ is short circuited?
2
GATE ECE 1999
Subjective
+5
-0
A bipolar junction transistor amplifier circuit is shown in the figure. Assume that the current source Ibias is ideal, and the transistor has very large$$\beta ,\,\,{r_{b\,\,}} = \,\,0,$$ and the $${r_0}\, \to \,\infty $$.
Determine the ac small-signal mid-band and voltage gain $$\left( {{V_o}/{V_s}} \right),$$ input resistance (R1, and output resistance (R0) of the circuit. Assume $${V_{T\,\,}} = \,\,26\,mV.$$
3
GATE ECE 1998
Subjective
+5
-0
In the circuit of fig. Determine the resistance Ro seen by the output terminals, ignore the effects of R1 and R2.
4
GATE ECE 1997
Subjective
+5
-0
In the cascade amplifier circuit shown below, determine the values of R1, R2 and RL. Such that the quiescent current through the transistors is 1mA and the collector voltage Vc1 = 3V, and Vc2 = 6V. Tke VBE = 0.7V, Transistor $$\beta $$ to be hifgh and base currents to be negligible.
Questions Asked from Bipolar Junction Transistor (Marks 5)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Representation of Continuous Time Signal Fourier Series Discrete Time Signal Fourier Series Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Transmission of Signal Through Continuous Time LTI Systems Discrete Time Linear Time Invariant Systems Sampling Continuous Time Signal Laplace Transform Discrete Fourier Transform and Fast Fourier Transform Transmission of Signal Through Discrete Time Lti Systems Miscellaneous Fourier Transform
Communications
Electromagnetics
General Aptitude