1
GATE ECE 2014 Set 3
MCQ (Single Correct Answer)
+1
-0.3
For an all-pass system H(z)= $${{({z^{ - 1}} - b)} \over {(1 - a{z^{ - 1}})}}$$ where $$\left| {H({e^{ - j\omega }})} \right| = \,1$$ , for all $$\omega $$. If Re (a) $$ \ne $$ 0,$${\mathop{\rm Im}\nolimits} (a) \ne 0$$ then b equals
A
a
B
a*
C
1/a*
D
1/a
2
GATE ECE 2014 Set 2
MCQ (Single Correct Answer)
+1
-0.3
An FIR system is described by the system function $$$H(z) = 1 + {7 \over 2}{z^{ - 1}} + {3 \over 2}{z^{ - 2}}$$$
A
maximum phase
B
manimum phase
C
mixed phase
D
zero phase
3
GATE ECE 2014 Set 2
MCQ (Single Correct Answer)
+1
-0.3
Let x$$\left[ n \right]$$ = x$$\left[- n \right]$$ . Let X(z) be the z-transform of x$$\left[ n \right]$$. if 0.5 +j 0.25 is a zero of X(z), which one of the folowing must also be a zero of X (z)
A
0.5 - j0.25
B
1/ (0.5 + j0.25)
C
1/ (0.5 - j 0.25)
D
2 + j4
4
GATE ECE 2012
MCQ (Single Correct Answer)
+1
-0.3
If $$x\left[ n \right]$$= $${(1/3)^{\left| n \right|}} - {(1/2)^n}u\left[ n \right]$$, then the region of convergence (ROC) of its Z- transform in the Z-plane will be
A
$${1 \over 3} < \left| {z\,} \right| < 3$$
B
$${1 \over 3} < \left| {z\,} \right| < {1 \over 2}$$
C
$${1 \over 2} < \left| {z\,} \right| < 3$$
D
$${1 \over 3} < \left| {z\,} \right|$$
GATE ECE Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
CBSE
Class 12