1
GATE ECE 2014 Set 3
MCQ (Single Correct Answer)
+1
-0.3
For an all-pass system H(z)= $${{({z^{ - 1}} - b)} \over {(1 - a{z^{ - 1}})}}$$ where $$\left| {H({e^{ - j\omega }})} \right| = \,1$$ , for all $$\omega $$. If Re (a) $$ \ne $$ 0,$${\mathop{\rm Im}\nolimits} (a) \ne 0$$ then b equals
2
GATE ECE 2014 Set 2
MCQ (Single Correct Answer)
+1
-0.3
Let x$$\left[ n \right]$$ = x$$\left[- n \right]$$ . Let X(z) be the z-transform of x$$\left[ n \right]$$. if 0.5 +j 0.25 is a zero of X(z), which one of the folowing must also be a zero of X (z)
3
GATE ECE 2014 Set 2
MCQ (Single Correct Answer)
+1
-0.3
An FIR system is described by the system function
$$$H(z) = 1 + {7 \over 2}{z^{ - 1}} + {3 \over 2}{z^{ - 2}}$$$
4
GATE ECE 2012
MCQ (Single Correct Answer)
+1
-0.3
If $$x\left[ n \right]$$= $${(1/3)^{\left| n \right|}} - {(1/2)^n}u\left[ n \right]$$, then the region of convergence (ROC) of its Z- transform in the Z-plane will be
Questions Asked from Discrete Time Signal Z Transform (Marks 1)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE 2018 (1)
GATE ECE 2016 Set 1 (1)
GATE ECE 2016 Set 3 (1)
GATE ECE 2015 Set 2 (1)
GATE ECE 2014 Set 4 (1)
GATE ECE 2014 Set 3 (1)
GATE ECE 2014 Set 2 (2)
GATE ECE 2012 (1)
GATE ECE 2010 (1)
GATE ECE 2009 (1)
GATE ECE 2006 (1)
GATE ECE 2005 (1)
GATE ECE 2004 (1)
GATE ECE 2001 (1)
GATE ECE 1999 (1)
GATE ECE 1998 (1)
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Representation of Continuous Time Signal Fourier Series Fourier Transform Continuous Time Signal Laplace Transform Discrete Time Signal Fourier Series Fourier Transform Discrete Fourier Transform and Fast Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Discrete Time Linear Time Invariant Systems Transmission of Signal Through Continuous Time LTI Systems Sampling Transmission of Signal Through Discrete Time Lti Systems Miscellaneous
Communications
Electromagnetics
General Aptitude