1
GATE ECE 2012
MCQ (Single Correct Answer)
+1
-0.3
If $$x\left[ n \right]$$= $${(1/3)^{\left| n \right|}} - {(1/2)^n}u\left[ n \right]$$, then the region of convergence (ROC) of its Z- transform in the Z-plane will be
2
GATE ECE 2010
MCQ (Single Correct Answer)
+1
-0.3
Consider the z-transform
X(z)=5$${z^2} + 4{z^{ - 1}} + 3;0 < \left| z \right| < \infty $$.
X(z)=5$${z^2} + 4{z^{ - 1}} + 3;0 < \left| z \right| < \infty $$.
The inverse z - transform x$$\,\left[ n \right]$$ is
3
GATE ECE 2009
MCQ (Single Correct Answer)
+1
-0.3
The ROC of Z-transform of the discrete time sequence
x(n)= $${\left( {{1 \over 3}} \right)^{n}}u(n) - {\left( {{1 \over 2}} \right)^{ n}}\,u( - n - 1)$$ is
x(n)= $${\left( {{1 \over 3}} \right)^{n}}u(n) - {\left( {{1 \over 2}} \right)^{ n}}\,u( - n - 1)$$ is
4
GATE ECE 2006
MCQ (Single Correct Answer)
+1
-0.3
If the region of convergence of $${x_1}\left[ n \right]$$ + $${x_2}\left[ n \right]$$ is 1/3< $$\left| {z\,} \right|$$<2/3, then the region of convergence of $${x_1}\left[ n \right]$$ - $${x_2}\left[ n \right]$$ includes
Questions Asked from Discrete Time Signal Z Transform (Marks 1)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE 2018 (1)
GATE ECE 2016 Set 1 (1)
GATE ECE 2016 Set 3 (1)
GATE ECE 2015 Set 2 (1)
GATE ECE 2014 Set 4 (1)
GATE ECE 2014 Set 3 (1)
GATE ECE 2014 Set 2 (2)
GATE ECE 2012 (1)
GATE ECE 2010 (1)
GATE ECE 2009 (1)
GATE ECE 2006 (1)
GATE ECE 2005 (1)
GATE ECE 2004 (1)
GATE ECE 2001 (1)
GATE ECE 1999 (1)
GATE ECE 1998 (1)
GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Representation of Continuous Time Signal Fourier Series Discrete Time Signal Fourier Series Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Transmission of Signal Through Continuous Time LTI Systems Discrete Time Linear Time Invariant Systems Sampling Continuous Time Signal Laplace Transform Discrete Fourier Transform and Fast Fourier Transform Transmission of Signal Through Discrete Time Lti Systems Miscellaneous Fourier Transform
Communications
Electromagnetics
General Aptitude