1
GATE ECE 2014 Set 2
MCQ (Single Correct Answer)
+1
-0.3
An FIR system is described by the system function $$$H(z) = 1 + {7 \over 2}{z^{ - 1}} + {3 \over 2}{z^{ - 2}}$$$
A
maximum phase
B
manimum phase
C
mixed phase
D
zero phase
2
GATE ECE 2014 Set 2
MCQ (Single Correct Answer)
+1
-0.3
Let x$$\left[ n \right]$$ = x$$\left[- n \right]$$ . Let X(z) be the z-transform of x$$\left[ n \right]$$. if 0.5 +j 0.25 is a zero of X(z), which one of the folowing must also be a zero of X (z)
A
0.5 - j0.25
B
1/ (0.5 + j0.25)
C
1/ (0.5 - j 0.25)
D
2 + j4
3
GATE ECE 2012
MCQ (Single Correct Answer)
+1
-0.3
If $$x\left[ n \right]$$= $${(1/3)^{\left| n \right|}} - {(1/2)^n}u\left[ n \right]$$, then the region of convergence (ROC) of its Z- transform in the Z-plane will be
A
$${1 \over 3} < \left| {z\,} \right| < 3$$
B
$${1 \over 3} < \left| {z\,} \right| < {1 \over 2}$$
C
$${1 \over 2} < \left| {z\,} \right| < 3$$
D
$${1 \over 3} < \left| {z\,} \right|$$
4
GATE ECE 2010
MCQ (Single Correct Answer)
+1
-0.3
Consider the z-transform
X(z)=5$${z^2} + 4{z^{ - 1}} + 3;0 < \left| z \right| < \infty $$.

The inverse z - transform x$$\,\left[ n \right]$$ is

A
$$5\,\delta [n + 2] + 3\,\delta {\rm{\;}}[n]{\mkern 1mu} + 4\delta [n - 1]$$
B
$$5\,\delta [n - 2] + 3\,\delta [n] + 4\,\delta [n + 1]$$
C
$$5\,u[n + 2] + 3\,u[n]{\mkern 1mu} + 4\,u[n - 1]$$
D
$$5\,u[n - 2] + 3\,u[n]{\mkern 1mu} + 4\,u[n + 1]$$
GATE ECE Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12