1
GATE ECE 2014 Set 2
+1
-0.3
An FIR system is described by the system function $$H(z) = 1 + {7 \over 2}{z^{ - 1}} + {3 \over 2}{z^{ - 2}}$$\$
A
maximum phase
B
manimum phase
C
mixed phase
D
zero phase
2
GATE ECE 2012
+1
-0.3
If $$x\left[ n \right]$$= $${(1/3)^{\left| n \right|}} - {(1/2)^n}u\left[ n \right]$$, then the region of convergence (ROC) of its Z- transform in the Z-plane will be
A
$${1 \over 3} < \left| {z\,} \right| < 3$$
B
$${1 \over 3} < \left| {z\,} \right| < {1 \over 2}$$
C
$${1 \over 2} < \left| {z\,} \right| < 3$$
D
$${1 \over 3} < \left| {z\,} \right|$$
3
GATE ECE 2010
+1
-0.3
Consider the z-transform
X(z)=5$${z^2} + 4{z^{ - 1}} + 3;0 < \left| z \right| < \infty$$.

The inverse z - transform x$$\,\left[ n \right]$$ is

A
$$5\,\delta [n + 2] + 3\,\delta {\rm{\;}}[n]{\mkern 1mu} + 4\delta [n - 1]$$
B
$$5\,\delta [n - 2] + 3\,\delta [n] + 4\,\delta [n + 1]$$
C
$$5\,u[n + 2] + 3\,u[n]{\mkern 1mu} + 4\,u[n - 1]$$
D
$$5\,u[n - 2] + 3\,u[n]{\mkern 1mu} + 4\,u[n + 1]$$
4
GATE ECE 2009
+1
-0.3
The ROC of Z-transform of the discrete time sequence
x(n)= $${\left( {{1 \over 3}} \right)^{n}}u(n) - {\left( {{1 \over 2}} \right)^{ n}}\,u( - n - 1)$$ is
A
$${1 \over 3} < \left| {z\,} \right| < {1 \over 2}$$
B
$$\left| {z\,} \right| > {1 \over 2}$$
C
$$\left| {z\,} \right| < {1 \over 2}$$
D
$$2 < \left| {z\,} \right| < 3$$
EXAM MAP
Medical
NEET