1
GATE ME 2002
+2
-0.6
Arrivals at a telephone booth are considered to be Poisson, with an average time of $$10$$ minutes between successive arrivals. The length of a phone call is distributed exponentially with mean $$3$$ minutes. The probability that an arrival does not have to wait before service is
A
$$0.3$$
B
$$0.5$$
C
$$0.7$$
D
$$0.9$$
2
GATE ME 2000
+2
-0.6
In a single server infinite population queuing model, arrivals follow a Poisson distribution with mean $$\lambda = 4$$ per hour. The service times are exponential with mean service time equal to $$12$$ minutes. The expected length of the queue will be
A
$$4$$
B
$$3.2$$
C
$$1.25$$
D
$$24.3$$
3
GATE ME 1999
+2
-0.6
At a production machine, parts arrive according to a Poisson process at the rate of $$0.35$$ parts per minute. Processing time for parts have exponential distribution with mean of $$2$$ minutes. What is the probability that a random part arrival finds that there are already $$8$$ parts in the system (in machine $$+$$ in queue)?
A
$$0.0247$$
B
$$0.0576$$
C
$$0.0173$$
D
$$0.082$$
4
GATE ME 1995
Subjective
+2
-0
On the average $$100$$ customers arrive at a place each hour, and on the average the server can process $$120$$ customers per hour. What is the proportion of time the server is idle?
GATE ME Subjects
Engineering Mechanics
Strength of Materials
Theory of Machines
Engineering Mathematics
Machine Design
Fluid Mechanics
Turbo Machinery
Heat Transfer
Thermodynamics
Production Engineering
Industrial Engineering
General Aptitude
EXAM MAP
Joint Entrance Examination