1
GATE ME 2004
MCQ (Single Correct Answer)
+2
-0.6
A maintenance service facility has Poisson arrival rates, negative exponential service time and operates on a ‘first come first served’ queue discipline. Breakdowns occur on an average of $$3$$ per day with a range of zero to eight. The maintenance crew can service an average of $$6$$ machines per day with a range of zero to seven. The mean waiting time for an item to be serviced would be
2
GATE ME 2002
MCQ (Single Correct Answer)
+2
-0.6
Arrivals at a telephone booth are considered to be Poisson, with an average time of $$10$$ minutes between successive arrivals. The length of a phone call is distributed exponentially with mean $$3$$ minutes. The probability that an arrival does not have to wait before service is
3
GATE ME 2000
MCQ (Single Correct Answer)
+2
-0.6
In a single server infinite population queuing model, arrivals follow a Poisson distribution with mean $$\lambda = 4$$ per hour. The service times are exponential with mean service time equal to $$12$$ minutes. The expected length of the queue will be
4
GATE ME 1999
MCQ (Single Correct Answer)
+2
-0.6
At a production machine, parts arrive according to a Poisson process at the rate of $$0.35$$ parts per minute. Processing time for parts have exponential distribution with mean of $$2$$ minutes. What is the probability that a random part arrival finds that there are already $$8$$ parts in the system (in machine $$ + $$ in queue)?
Questions Asked from Queuing (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ME Subjects
Engineering Mechanics
Strength of Materials
Theory of Machines
Engineering Mathematics
Machine Design
Fluid Mechanics
Turbo Machinery
Heat Transfer
Thermodynamics
Production Engineering
Industrial Engineering
General Aptitude