1
GATE ECE 1999
Subjective
+5
-0
A 100 m section of an air-filled rectangular wave-guide operating in the $$T{E_{10}}$$ mode has a cross-sectional dimension of 1.071 cm $$\times$$ 0.5 cm. Two pulses carriers of 21 GHz and 28 GHz are simultaneously launched at one end of the wave-guide section. What is the time delay difference between the two pulses at the other end of the waveguide?
2
GATE ECE 1998
Subjective
+5
-0
A rectangular waveguide with inner dimensions 6 cm $$\times$$ 3 cm has been designed for a single mode operation. Find the possible frequency range of operation such that the lowest frequency is 5% above the cut off and the highest frequency is 5% below the cut off of the next higher mode.
3
GATE ECE 1998
Subjective
+5
-0
The region between a pair of parallel perfectly conducting planes of infinite extent in the y and z directions is partially filled with a dielectric as shown in Figure. A 30 GHz $$T{E_{10}}$$ wave is incident on the air dielectric interface as shown. Find the VSWR at the interface. 4
GATE ECE 1996
Subjective
+5
-0
In an air-filled rectangular waveguide, the vector electric field is given by $$\mathop E\limits^ \to = \cos \,(20\,\pi \,y)\,\exp \,\,\left[ { - j\left( {{{40\,\,\pi } \over 3}} \right)\,z\, + j\,\omega \,t} \right]\,\hat i\,\,\,V/m$$

Find the vector magnetic field and the phase velocity of the wave inside the waveguide.

GATE ECE Subjects
Network Theory
Control Systems
Electronic Devices and VLSI
Analog Circuits
Digital Circuits
Microprocessors
Signals and Systems
Communications
Electromagnetics
General Aptitude
Engineering Mathematics
EXAM MAP
Joint Entrance Examination