1
JEE Advanced 2020 Paper 1 Offline
Numerical
+4
-0
Change Language
Consider the reaction,

A $$\rightleftharpoons $$ B

at 1000 K. At time t', the temperature of the system was increased to 2000 K and the system was allowed to reach equilibrium. Throughout this experiment the partial pressure of A was maintained at 1 bar. Given, below is the plot of the partial pressure of B with time. What is the ratio of the standard Gibbs energy of the reaction at 1000 K to that at 2000 K?

JEE Advanced 2020 Paper 1 Offline Chemistry - Chemical Equilibrium Question 4 English
Your input ____
2
JEE Advanced 2020 Paper 1 Offline
Numerical
+4
-0
Change Language
Consider a 70% efficient hydrogen-oxygen fuel cell working under standard conditions at 1 bar and 298 K. Its cell reaction is

$${H_2}(g) + {1 \over 2}{O_2}(g)\buildrel {} \over \longrightarrow {H_2}O(l)$$

The work derived from the cell on the consumption of 1.0 $$ \times $$ 10$$-$$3 mole of H2(g) is used to compress 1.00 mole of a monoatomic ideal gas in a thermally insulated container. What is the change in the temperature (in K) of the ideal gas?

The standard reduction potentials for the two half-cells are given below :

$${O_2}(g) + 4{H^ + }(aq) + 4{e^ - }\buildrel {} \over \longrightarrow 2{H_2}O(l),$$

$${E^o} = 1.23V$$

$$2{H^ + }(aq) + 2{e^ - }\buildrel {} \over \longrightarrow {H_2}(g),$$

$${E^o} = 0.00\,V$$

Use, $$F = 96500\,C\,mo{l^{ - 1}}$$, $$R = 8.314\,J\,mo{l^{ - 1}}\,{K^{ - 1}}$$.
Your input ____
3
JEE Advanced 2020 Paper 1 Offline
Numerical
+4
-0
Change Language
Aluminium reacts with sulphuric acid to form aluminium sulphate and hydrogen. What is the volume of hydrogen gas in litre (L) produced at 300 K and 1.0 atm pressure, when 5.4 g of aluminium and 50.0 mL of 5.0 M sulphuric acid are combined for the reaction?

(Use molar mass of aluminium as 27.0 g mol$$-$$1, R = 0.082 atm L mol$$-$$1 K$$-$$1)
Your input ____
4
JEE Advanced 2020 Paper 1 Offline
Numerical
+4
-0
Change Language
$$_{92}^{238}U$$ is known to undergo radioactive decay to form $$_{82}^{206}Pb$$ by emitting alpha and beta particles. A rock initially contained 68 $$ \times $$ 10$$-$$6 g of $$_{92}^{238}U$$. If the number of alpha particles that it would emit during its radioactive decay of $$_{92}^{238}U$$ to $$_{82}^{206}Pb$$ in three half-lives is Z $$ \times $$ 1018, then what is the value of Z?
Your input ____
JEE Advanced Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12